Contents

Preface — VII

1	Introduction —— 1
1.1	A disruptive technology, additive manufacturing —— 1
1.2	Advantages of additive manufacturing over traditional
	manufacturing —— 2
1.3	Classification of additive manufacturing technologies —— 4
1.3.1	Vat polymerization —— 4
1.3.2	Material jetting —— 8
1.3.3	Binder jetting —— 9
1.3.4	Material extrusion —— 11
1.3.5	Powder bed fusion —— 13
1.3.6	Directed energy deposition —— 15
1.3.7	Sheet lamination —— 16
1.4	Timeline/history of additive manufacturing —— 18
2	Additive manufacturing of polymers —— 21
2.1	Classification of polymers —— 21
2.1.1	Thermoplastics —— 22
2.1.2	Thermosets —— 22
2.1.3	Elastomers —— 23
2.2	Selection of polymers for additive manufacturing —— 23
2.3	Additive manufacturing of thermoplastic polymers —— 24
2.4	Additive manufacturing of thermosets —— 26
2.4.1	Additive manufacturing of photosensitive thermosets —— 27
2.4.2	Additive manufacturing of heat-sensitive thermosets —— 27
2.5	Additive manufacturing of elastomers —— 29
3	Additive manufacturing of polymer composites —— 31
3.1	Additive manufacturing of powder-doped polymer composites —— 3°
3.2	Additive manufacturing of short fiber-doped composites —— 34
3.2.1	Short fiber-reinforced thermoplastic composites —— 35
3.2.2	Short fiber-reinforced thermoset composites —— 37
3.3	Prediction of mechanical properties of short fiber-reinforced
	composites —— 39
3.4	Alignment of short fibers within additively manufactured
	composites —— 41

3.5	Additive manufacturing of continuous fiber-reinforced
2.6	composites —— 42
3.6	Mechanical performance comparison of additively manufactured
	polymer composites —— 45
4	Additive manufacturing of metals —— 48
4.1	Feedstock material fabrication for powder bed fusion —— 49
4.2	Feedstock materials used in metal additive manufacturing —— 52
4.2.1	Titanium and titanium alloys —— 53
4.2.2	Aluminum alloys —— 54
4.2.3	Other metals —— 54
4.3	Design considerations in metal additive manufacturing —— 55
4.3.1	Void formation —— 55
4.3.2	Residual thermal stresses —— 55
4.3.3	Surface roughness —— 56
4.3.4	Postprocessing —— 56
4.4	Mechanical properties of additively manufactured metals —— 57
5	Additive manufacturing of ceramics —— 62
5.1	Powder-based ceramic additive manufacturing — 63
5.1.1	Binder jetting of ceramics —— 64
5.1.2	Powder bed fusion of ceramics —— 65
5.2	Slurry-based ceramic additive manufacturing —— 66
5.2.1	Vat polymerization of ceramics —— 66
5.2.2	Direct writing (DW) of ceramics —— 67
5.3	Bulk solid-based technologies —— 70
5.3.1	Sheet lamination —— 71
5.3.2	Fused filament fabrication (FFF) —— 72
5.4	Additive manufacturing of polymer-derived ceramics —— 73
5.5	Mechanical properties of AM ceramics —— 74
6	Bioprinting —— 78
6.1	Bioprinting methods —— 78
6.2	Bioink types used in bioprinting —— 81
6.3	Bioprinting applications —— 83
6.3.1	Bioprinting of blood vessels —— 84
6.3.2	Skin bioprinting —— 85
6.3.3	Cartilage printing —— 86
6.3.4	Cardiac tissue bioprinting —— 86
6.3.5	Kidney tissue bioprinting —— 88
6.4	Challenges and limitations of bioprinting functional organs —— 89
6.5	Bioprinting in cancer research —— 89

7.1	Topology optimization for additive manufacturing —— 93
7.2	Topology optimization methods —— 96
7.3	Solution of topology optimization problem using ANSYS finite element software —— 99
8	Advanced concepts in additive manufacturing —— 101
8.1	Hybrid additive manufacturing —— 101
8.1.1	Additive/subtractive hybrid manufacturing —— 101
8.1.2	Additive/additive hybrid manufacturing —— 102
8.1.3	Hybrid additive manufacturing/scaffolding technologies —— 103
8.2	Additive manufacturing of thermoelectric materials —— 106
8.3	4D printing with smart materials —— 113
8.3.1	4D printing materials —— 115
8.3.2	Applications of 4D-printed structures —— 119
8.4	Artificial intelligence in additive manufacturing —— 120
8.4.1	Implementation of AI in design optimization —— 121
8.4.2	Implementation of AI in process/quality control —— 122
8.4.3	Implementation of AI in additive manufacturing automation and process management —— 124
Refere	ences —— 127

Topology optimization —— 92

7

Index —— 141