

Contents

List of Contributors xvii

Preface xxiii

1 Fabrication of Nanomaterials and Their Potential Advantage for Sustainable Agriculture 1
Arjun Kumar Mehara, Anuradha Kumari, Neeraj K. Verma, Prachi Marwaha, Abhishek Rai, Mayank Kumar Singh, and Ankit Kumar Singh

- 1.1 Introduction 1
- 1.1.1 Shortcomings of Conventional Agriculture 2
- 1.2 Fabrication Techniques for Nanomaterials 3
 - 1.2.1 Top-down Approaches 3
 - 1.2.1.1 Mechanical Milling or Ball Milling 4
 - 1.2.1.2 Nanolithography 5
 - 1.2.1.3 Laser Ablation Method 5
 - 1.2.1.4 Thermal Decomposition 5
 - 1.2.1.5 Sputtering Method 6
 - 1.2.1.6 Arc-discharge Method 6
 - 1.2.2 Bottom-up Approach 7
 - 1.2.2.1 CVD Method 7
 - 1.2.2.2 Sol-Gel Method 7
 - 1.2.2.3 Spinning Method 7
 - 1.2.2.4 Hydrothermal Method 8
- 1.3 Green Synthesis of Nanomaterials 8
 - 1.3.1 Nanomaterial Synthesis Using Microorganism 8
 - 1.3.2 Nanomaterial Synthesis Using Bacteria 9
 - 1.3.3 Nanomaterial Synthesis Using Actinomycetes 9
 - 1.3.4 Green Synthesis of NP Using Fungi 10
 - 1.3.5 Nanomaterial Synthesis Using Plant Extract 10
- 1.4 Nanomaterials as Controlled Delivery System for Actives and Sustainable Agriculture 11
 - 1.4.1 Carrier-based Nanomaterials 11

1.4.1.1	Nanopesticides	14
1.4.1.2	Nanofertilizers	15
1.4.1.3	Nanosensors	15
1.4.1.4	Stimuli-responsive Nanocarriers	15
1.4.2	Carrier-free Nanomaterials	20
1.4.2.1	Micronutrient NFs	21
1.4.2.2	Macronutrient NFs	22
1.4.2.3	Nano-biofertilizers	24
1.5	Challenges and Future Outlook	25
1.6	Conclusion	26
Acknowledgments 26		
References 27		

2 Effect of Nanocomposites on Sustainable Growth of Crop Plants and Productivity 47

Katina Chachei, Sonali Ranjan, Kirpa Ram, and Ram Sharan Singh

2.1	Introduction	47
2.2	Types of NCs and Its Uptake Through Roots and Leaves in Plants	49
2.2.1	Metal-based Polymer Composites	50
2.2.2	Carbon-based Polymer Composites	50
2.3	Application and Effects of NCs in Plant Development and Productivity	51
2.3.1	Positive Effects on the Application of NCs in Plant	52
2.3.1.1	NC-based Fertilizer	55
2.3.1.2	NC-based Pesticide: Fungicide, Bactericide, and Herbicide	57
2.3.1.3	Biochar-based NCs	59
2.3.1.4	NC-based Materials as Sensors	60
2.3.1.5	Biopolymer-based NCs	61
2.3.1.6	Chitosan-based NCs	62
2.4	Adverse Effects of NCs on Crop Productivity and Sustainability	64
2.5	Challenges and Future Prospects in Application of NCs on Crop Plants	67
2.6	Conclusion	68
Acknowledgement 68		
Author Contribution 68		
References 68		

3 Role of Nanofertilizers in Sustainable Growth of Crop Plants and Production 77

Aaradhya Pandey, Pragya Tiwari, and Eti Sharma

3.1	Introduction	77
3.2	NFs, Its Types, and Synthesis Methods	78
3.2.1	NF and Their Significance in Current Agriculture	80
3.2.2	Classification of NFs	83
3.2.2.1	Action-based NFs	83
3.2.2.2	Nutrient-based NFs	83
3.2.2.3	Consistency-based NFs	84
3.2.2.4	Nanocarrier-loaded NFs	84

3.2.2.5	Nano-biofertilizers	84
3.3	Mode of Action	84
3.3.1	Mechanism of Nutrient Release and Uptake by Plants	85
3.3.2	Increased Nutrition Uptake by Plants	87
3.3.3	Improved Water and Nutrient Retention in Soil	87
3.4	Contribution Toward Sustainable Agriculture	88
3.4.1	Enhanced Nutrient Retention Capacity	88
3.4.2	Biotic and Abiotic Stress Tolerance by Plants	88
3.4.3	Increase Microbial Activity	89
3.4.4	Lesser Environmental Pollution	89
3.5	Customization of NFs	90
3.5.1	Dosage Optimization	90
3.5.2	Method of NFs' Application	91
3.5.2.1	Foliar Spray	91
3.5.2.2	Nanopriming	91
3.5.2.3	Soil Treatment	92
3.6	NFs' Integration with Precision Agriculture	92
3.7	Ethical, Regulatory, and Safety Issues	93
3.8	Advantages and Limitations	95
3.8.1	Advantages of NFs	95
3.8.2	Limitation of NFs	96
3.9	Conclusion and Future Perspective	97
	References	97

4 Nanotechnology is an Emerging Tool for Stress Management in Crop Plants 105

Mohd Anas, Mohammad Umar, and Abdul Razzak

4.1	Introduction	105
4.2	Synthesis and Characterization of Nanomaterials	109
4.2.1	Bottom-up Method	109
4.2.2	Chemical Method	109
4.2.3	Biological Method	109
4.2.4	Top-down Method (Physical Approach)	110
4.3	Characterization of Nanomaterials	110
4.4	Applications of Nanotechnology in Managing Abiotic Stress	111
4.4.1	Drought Stress	111
4.4.2	Salt Stress	112
4.4.3	Thermal Stress	113
4.4.4	Toxic Metal Stress	115
4.4.5	Organic Pollutants Stress	116
4.4.6	Hypoxia and Anoxia Stresses	117
4.5	Environmental Implications: Case Studies and Recent Plant Research	118
4.5.1	NPs as Phyto regulators	119
4.5.2	NPs for Preserving Soil Integrity and Functionality	120
4.5.3	Utilizing Nanopesticides in Plant Defense	121

4.5.4	Antimicrobial Action of NPs	123
4.6	Conclusion and Future Perspectives	124
References		125
5	Impacts of Nanomaterials on Soil Microbial Communities	135
<i>Nisha Kumari, Abhishek Tiwari, Ingle Sagar Nandulal, Sai Parasar Das, Bhabani Prasad Mondal, Bipin Bihari, Pritam Ganguly, Chandini, and Randeep Kumar</i>		
5.1	Introduction	135
5.2	Types of Nanomaterials and Their Agricultural Applications	136
5.3	Soil Microbial Communities: Role in Agriculture	136
5.3.1	Composition and Functions	136
5.4	Effect of NPs on Microbial Diversity	137
5.4.1	Changes in Microbial Community Structure	138
5.4.2	Impacts of NMs on Microbial Function and Soil Health	138
5.5	Ecotoxicology of NPs on Soil Microbial Community	139
5.5.1	Effects of Zinc NPs	139
5.5.2	Effect of Titanium NPs	140
5.5.3	Effect of Ag-NPs	141
5.5.4	Effect of Iron NPs	142
5.5.5	Effect of Copper NPs	142
5.6	Assessment and Monitoring of NM Impacts	143
5.6.1	Long-term Effects on Soil Ecosystem Services	143
5.6.2	Potential Risks and Benefits	144
5.7	Mitigation Strategies and Future Directions	145
5.7.1	Approaches to Minimize Negative Impacts	145
5.8	Regulatory and Policy Considerations	147
5.9	Future Research Prospects and Knowledge Gaps	148
5.9.1	Method of Application of Nanofertilizers	148
5.9.2	Formation of Successful Execution Mechanisms	149
5.9.3	Assessing the Financial Possibility of Extensive Production	149
5.9.4	Significance of Nanofertilizers on Environment	149
5.10	Conclusion	149
References		150
6	Silver Nanoparticles' Emerging Roles in Enhancing Crop Plant Growth and Yield	159
<i>Anuradha Kumari, Anumanchi Sree Manogna, Prabhat Kumar, and Ilora Ghosh</i>		
6.1	Introduction	159
6.2	AgNPs: Synthesis and Characterization	161
6.2.1	Methods for Synthesizing AgNPs	161
6.2.1.1	Chemical Methods	162
6.2.1.2	Physical Methods	162
6.2.1.3	Biological Methods	162
6.2.2	Factors Influencing the Synthesis Process and NP Properties	163
6.2.2.1	Concentration of Silver Precursor	163

6.2.2.2 Reducing Agent Type and Concentration	163
6.2.2.3 Stabilizing Agents	163
6.2.2.4 pH of the Reaction Medium	163
6.2.2.5 Temperature	163
6.2.3 Characterization Techniques for Evaluating the Size, Shape, and Stability of AgNPs	163
6.2.3.1 UV-vis Spectroscopy	164
6.2.3.2 Transmission Electron Microscopy	164
6.2.3.3 Scanning Electron Microscopy	165
6.2.3.4 Dynamic Light Scattering	165
6.2.3.5 X-ray Diffraction	165
6.2.3.6 Fourier Transform Infrared Spectroscopy	165
6.2.3.7 Zeta-potential Analysis	165
6.3 Antimicrobial Properties of AgNPs	165
6.3.1 Mechanisms of Action of AgNPs Against Plant Pathogens	166
6.3.1.1 Disruption of Cell Membrane Integrity	166
6.3.1.2 Generation of ROS	166
6.3.1.3 Interaction With Biomolecules	166
6.3.1.4 Inhibition of Signal Transduction	166
6.3.1.5 Release of Silver Ions	167
6.3.2 Effects of AgNPs on Pathogen Growth Inhibition and Disease Suppression in Crops	167
6.3.2.1 Bacterial Pathogens	167
6.3.2.2 Fungal Pathogens	167
6.3.2.3 Viral Pathogens	167
6.3.3 Potential Applications of AgNPs as Antimicrobial Agents in Crop Protection	168
6.3.3.1 Seed Treatment	168
6.3.3.2 Foliar Sprays	168
6.3.3.3 Soil Amendments	168
6.3.3.4 Postharvest Treatments	168
6.4 Seed Treatment With AgNPs	168
6.4.1 Effects of AgNP Seed Treatment on Germination Rates and Seedling Vigor	169
6.4.2 Influence of AgNPs on Seedling Establishment and Early Growth Stages	170
6.4.3 Optimization of AgNPs' Application Methods for Seed Treatment	170
6.5 Nutrient Uptake and Transport Enhancement	170
6.5.1 Role of AgNPs in Improving Nutrient Absorption by Crop Plants	171
6.5.2 Mechanisms of AgNP-mediated Nutrient Uptake and Transport Within Plants	171
6.5.2.1 Direct Uptake by Roots	171
6.5.2.2 Translocation Through Xylem	171
6.5.2.3 Influence on Cellular Mechanisms	172
6.5.2.4 Oxidative Stress and Defense Mechanisms	172
6.5.2.5 Formation of New Pores	172
6.5.2.6 Influence of Ag ⁺ Ions	172

6.5.3	Effects of AgNPs on Nutrient Availability in Soil and Nutrient Utilization Efficiency by Plants	172
6.5.3.1	AgNPs' Effects on Soil's Nutrient Availability	172
6.5.3.2	Plant Nutrient Utilization Efficiency	172
6.6	Stress Tolerance Improvement	173
6.6.1	Mechanisms of Stress Tolerance Enhancement	173
6.6.1.1	ROS Management	173
6.6.1.2	Methylglyoxal Detoxification	173
6.6.1.3	Enhanced Nutrient Uptake	173
6.6.1.4	Gene Expression Regulation	173
6.6.1.5	Physiological Enhancements	174
6.6.1.6	Hormonal Regulation	174
6.6.2	Mitigation of Abiotic Stresses by AgNPs	174
6.6.2.1	Drought Stress Mitigation	174
6.6.2.2	Salinity Stress Alleviation	174
6.6.2.3	Heavy Metal Stress Reduction	174
6.7	Promotion of Photosynthesis and Biomass Accumulation	175
6.7.1	Mechanisms of AgNPs-mediated Photosynthesis Promotion	175
6.7.1.1	Improved Chlorophyll Content	175
6.7.1.2	Enhanced Photosynthetic Efficiency	175
6.7.1.3	Increased Nutrient Uptake	175
6.7.1.4	Impact on Stomatal Conductance	175
6.7.2	Promotion of Biomass Accumulation	175
6.7.2.1	Root Growth Promotion	175
6.7.2.2	Shoot Growth Enhancement	176
6.7.2.3	Stress Tolerance Improvement	176
6.7.2.4	Influence of AgNP Treatment on Crop Yield	176
6.8	Root Development and Soil Interaction	176
6.8.1	Promotion of Root Growth and Development by AgNPs	176
6.8.2	Effects of AgNPs on Root Architecture, Root Surface Area, and Nutrient Uptake	177
6.8.3	Interactions Between AgNPs and Soil Components Affecting Plant Growth	177
6.9	Sustainable Agriculture Applications	178
6.9.1	Potential Benefits and Challenges of Integrating AgNPs Into Agricultural Practices	178
6.9.1.1	Potential Benefits	178
6.9.1.2	Challenges	179
6.9.2	Considerations for the Safe and Responsible Use of AgNPs in Crop Production	179
6.10	Conclusion	180
	References	180
7	Effect of Nanomaterials on the Physiological Status of Crop Plants	187
	<i>Akanksha Rout, Komal Jalan, and Pradipta Banerjee</i>	
7.1	Introduction	187

7.2	Types of NPs	189
7.3	Synthesis and Characterization of NMs	195
7.3.1	Methods of Synthesis	195
7.3.2	Techniques for Characterization	195
7.3.3	NM–crop Plant Interaction	196
7.3.3.1	Method of Use of NMs	196
7.3.3.2	Uptake, Translocation, Accumulation, and Distribution	197
7.4	Physiological Effects on Crop Plants	198
7.4.1	Impact on Photosynthesis	198
7.4.1.1	Changes in Chlorophyll Content	198
7.4.1.2	Effects on Photosynthetic Rate and Efficiency	199
7.4.2	Growth and Development	199
7.4.2.1	Seed Germination and Root Development	199
7.4.2.2	Root and Shoot Growth and Biomass	200
7.4.3	Nutrient Uptake and Assimilation	201
7.5	Molecular and Biochemical Responses	202
7.5.1	Gene Expression and Signaling Pathways	202
7.5.1.1	Changes in Gene Expression Profiles	202
7.5.1.2	Key Signaling Pathways Affected	203
7.5.2	Enzymatic Activity and Stress Responses	204
7.5.2.1	Alterations in Enzymatic Activities	204
7.5.2.2	Responses to Oxidative and Abiotic Stress	207
7.6	Case Studies and Experimental Findings	209
7.6.1	Positive Effects	209
7.6.1.1	Enhanced Growth and Yield	209
7.6.1.2	Improved Resistance to Pests and Diseases	210
7.6.2	Negative Effects	211
7.6.2.1	Phytotoxicity and Growth Inhibition	211
7.6.2.2	Long-term Environmental Impact	212
7.7	Practical Applications and Future Prospects	214
7.7.1	Current Applications in Agriculture: Implementation and Realization	215
7.7.1.1	Nanofertilizers and Nutrient Delivery	215
7.7.1.2	Nanopesticides and Crop Protection	215
7.7.1.3	Nanosensors and Precision Agriculture	215
7.7.1.4	Stress Mitigation and Crop Resilience	215
7.8	Environmental and Safety Considerations	216
7.8.1	Ecotoxicology of NMs	216
7.8.1.1	Impact on Soil, Water, and Nontarget Organisms	216
7.8.2	Risk Assessment and Management	217
7.8.2.1	Preliminary Activity in Risk Ranking	217
7.8.2.2	Hazard Assessment	217
7.8.2.3	Dose–Response Assessment	218
7.8.2.4	Exposure Assessment	218
7.8.2.5	Risk Characterization	218
7.9	Conclusion	218

7.10 Future Prospects 220

References 220

8 Chitosan Nanoparticles as Nanosorbent for Potential Removal of Pollutant from the Soil 231

Abirami Geetha Natarajan, Kripa V, Jothi Ganesan M, and Philip Bernstein Saynik

8.1 Introduction 231

8.1.1 Background on Soil Remediation 231

8.1.1.1 Primary Causes of Soil Pollution 232

8.1.2 Need for Effective Remediation Techniques 233

8.2 Chitosan 234

8.2.1 Chemical Structure and Properties 234

8.2.1.1 Solubility 235

8.2.1.2 Viscosity 236

8.2.1.3 Thermal Properties 236

8.2.1.4 Biological Properties 236

8.2.1.5 Mechanical Properties 236

8.2.2 Synthesis and Modification 236

8.2.2.1 Chemical Method 237

8.2.2.2 Biological Method 237

8.2.3 Applications of Chitosan 238

8.3 Nanotechnology and Soil Remediation 239

8.3.1 Introduction to Nanotechnology 239

8.3.2 Types of Nano Adsorbents 240

8.3.2.1 Metallic Oxide Nanoparticles 241

8.3.2.2 Metallic Nanoparticles 241

8.3.2.3 Carbonaceous Nanoparticles 241

8.3.2.4 Other Nanoparticles 241

8.3.3 Benefits of Using Nano Adsorbent 241

8.3.3.1 High Surface Area 241

8.3.3.2 Enhanced Reactivity 241

8.3.3.3 Selectivity and Functionalization 242

8.3.3.4 Small Intraparticle Diffusion Distance 242

8.3.3.5 Versatility 242

8.3.3.6 Reduced Secondary Pollution 242

8.4 Chitosan Nano Adsorbent for Soil Remediation 242

8.4.1 Synthesis of Chitosan Nanoparticles 242

8.4.1.1 Ionic Gelation 242

8.4.1.2 Emulsification and Cross-linking 243

8.4.1.3 Emulsion Solvent Diffusion 243

8.4.1.4 Microemulsion 243

8.4.1.5 Reverse Micellization 243

8.4.1.6 Synthesis from Biocomposites 243

8.4.2 Functionalization of Chitosan Nanoparticles 244

8.4.2.1	Cross-linking	244
8.4.2.2	Grafting	244
8.4.2.3	Functional Group Addition	245
8.4.2.4	Electrostatic Interactions	245
8.4.2.5	Hydrogen Bonding	245
8.4.2.6	Hybrid Functionalization	245
8.5	Key Research Studies	245
8.5.1	Removal of Herbicides	246
8.5.1.1	Removal of Diquat	246
8.5.1.2	Removal of Atrazine	246
8.5.2	Pesticide Removal	247
8.5.3	Organic Pollution Degradation	247
8.5.3.1	Degradation of Trichloroethene	247
8.5.3.2	Oil Spill Remediation	248
8.5.4	Immobilization and Removal of Heavy Metals	248
8.5.4.1	Stabilization of Chromium in Soil	248
8.5.4.2	Decontamination of Cu ²⁺ from Soil	248
8.5.4.3	Removal of Cd(II)	249
8.5.4.4	Uranium (VI) Sorption	249
8.6	Advantages and Limitations	250
8.7	Future Perspective and Research Directions	250
8.8	Conclusion	251
	References	252

9 Plant-based Nanomaterials for Remediation of Heavy Metal Pollution in Soil 257

Swagata Lakshmi Dhali and Moumita Pal

9.1	Introduction	257
9.2	Sources and Effects of HM Pollution in Soil	260
9.2.1	Arsenic (As) Pollution	261
9.2.2	Lead (Pb) Pollution	261
9.2.3	Cadmium (Cd) Pollution	261
9.2.4	Mercury (Hg) Pollution	262
9.2.5	Chromium (Cr) Pollution	262
9.2.6	Zinc (Zn) Pollution	262
9.3	Effects of HMs on Plants	263
9.4	Conventional Remediation Techniques of Heavy Metal Soil Pollution	264
9.4.1	Physical Methods	264
9.4.1.1	Soil Replacement	264
9.4.1.2	Immobilization/Solidification	264
9.4.1.3	Thermal Desorption	264
9.4.2	Chemical Methods	265
9.4.2.1	Washing	265
9.4.2.2	Biochar	265

9.4.2.3	Electrokinetic Method	265
9.4.3	Nanotechnology-assisted HM Remediation	265
9.4.4	Biological Methods	265
9.4.4.1	Phytoremediation	266
9.4.4.2	Microbial Remediation	266
9.4.4.3	Biosurfactants	266
9.5	Role of NPs in Soil Remediation	267
9.6	Plant-based Nanomaterials (PBNPs) for Soil Remediation	268
9.6.1	Overview of Different Types of Plant-Based Nanomaterials	269
9.6.1.1	Zero-valent Iron NPs	269
9.6.1.2	Carbon-based Nanomaterials	269
9.6.1.3	Copper NPs	269
9.6.1.4	Quantum Dots	270
9.6.1.5	Polymer NPs	270
9.6.2	Mechanism of Action of PBNPs	270
9.6.3	Examples of Successful Applications of Plant-based Nanomaterials in HM Remediation	271
9.6.3.1	Removal of Cr	272
9.6.3.2	Removal of Cr, Cd, and Pb	273
9.6.3.3	Removal of Pb	273
9.6.3.4	Mitigation of Cd Toxicity	273
9.6.3.5	Mitigating Arsenic Stress	274
9.7	Limitations of PBNPs	274
9.8	Conclusion	275
	References	275

10 Carbon Quantum Dots for the Efficient Degradation of Organic Contaminants 283

Vikky Kumar Mahto, Moumita Pal, Ved Prakash, Ankit Kumar Singh, Abhishek Rai, Vipendra Kumar Singh, and Vikas Kumar Singh

10.1	Introduction	283
10.1.1	Structure of CQDs	284
10.2	Synthesis Method	285
10.2.1	Hydrothermal Method	286
10.2.2	Microwave Irradiation Method	286
10.2.3	Pyrolysis Method	286
10.2.4	Chemical Ablation Method	287
10.2.5	Electrochemical Carbonization	287
10.2.6	Arc Discharge Method	287
10.3	Organic Contaminants and Their Impacts on Plants and the Environment	288
10.3.1	Dyes	289
10.3.2	Polycyclic Aromatic Hydrocarbons	289
10.3.3	Pesticides and Insecticides	290
10.4	CQDs Application in Detection of Agrochemical Residues	291

10.4.1	Pesticides and Herbicides	291
10.4.2	Fungicides and Insecticides	293
10.5	Photocatalytic Degradation of Organic Contaminants Using CQDs	294
10.6	Conclusion and Future Outlook	295
	Abbreviations	296
	References	296

11 Carbon-based Nanomaterials: A Promising Tool for Sensing Toxic Metal Ions from Degraded Soil 305

Poorna Sneha M, Mohit Biju, Aishwarya Thomas, and Parvathi Balachandran

11.1	Introduction	305
11.1.1	Contamination of Soil by Toxic Metal Ions	305
11.1.2	Conventional Methods for the Detection of Toxic Metal Ions in Soil	307
11.1.3	Carbon-based Nanomaterials	307
11.2	Carbon-based Nanomaterials for Sensing the Purpose of a Sensing Tool	308
11.2.1	Allotropy of Carbon	308
11.2.2	Carbon-based Nanomaterials as an Alternative Strategy in Heavy Metal Sensing	308
11.2.3	Unique Properties of Carbon-based Nanomaterials	309
11.2.4	Types of Carbon-based Nanomaterials	309
11.2.4.1	Graphene	310
11.2.4.2	Nanodiamonds	310
11.2.4.3	Carbon Nanotubes	311
11.2.4.4	Fullerenes	311
11.2.4.5	Carbon Dots	311
11.3	Sensing Mechanisms of Toxic Metal Ions by Nanomaterials	313
11.3.1	Nanocarbon in Electrochemical Sensing	313
11.3.2	Existing Sensing Mechanisms Employed for Metal Ion Detection	313
11.3.2.1	Graphene-based Sensor for Metal Ion Detection	314
11.3.2.2	Nano-diamond-based Sensor for Metal Ion Detection	314
11.3.2.3	CNT-based Sensor for Metal Ion Detection	315
11.3.2.4	Other Nanocarbons for Metal Ion Detection	316
11.3.3	Factors Influencing the Sensitivity of Sensing Mechanisms of Carbon-based Nanomaterials	316
11.3.3.1	Materialistic Properties	316
11.3.3.2	Environmental Interactions	317
11.3.3.3	Functionalization Techniques	317
11.4	Applications Related to Metal Ion Detection by Carbon-based Nanomaterials	317
11.5	Challenges Associated with the Usage of Carbon-based Nanomaterials	320
11.6	Future Prospects of Carbon-based Nanomaterials	322
11.7	Conclusion	323
	Abbreviations	324
	References	324

12	Breaking Barriers of Conventional Disease Protection: Impact of Nanopathology	333
	<i>Puja Kumari, Sawant Shraddha Bhaskar, Jeetu Narware, and Abhijeet Ghatak</i>	
12.1	Introduction	333
12.2	Evolution of Nanotechnology in the Agriculture Field	335
12.3	Key Characteristics and Aspects of Nanotechnology	335
12.3.1	Key Characteristics	335
12.3.2	Aspects of Nanotechnology	336
12.3.2.1	Nanoscale Materials	336
12.3.2.2	Nanofabrication Techniques or NP Synthesis Techniques	336
12.3.2.3	Applications of Nanotechnology	337
12.4	Nanopathology	337
12.4.1	Early Detection and Diagnosis	337
12.4.2	Targeted Delivery of Agrochemicals	339
12.4.3	Advanced Plant Disease Management	339
12.4.3.1	Enhanced Resistance and Tolerance	339
12.4.4	Soil and Water Treatment	340
12.4.5	Biofortification and Plant Health	342
12.5	Challenges and Considerations	342
12.6	Conclusion	342
	References	343
13	Role of Nanoparticles in Plant Disease Management	347
	<i>Umesh Kumar, Prince Kumar Singh, Parvati Madheshiya, and Indrajeet Kumar</i>	
13.1	Introduction	347
13.2	Types of NPs used in Plant Disease Management	348
13.3	Plant Disease Management Through NPs	351
13.3.1	Inhibition of Biofilm Formation	352
13.3.2	Cell Wall and Cell Membrane Destruction	352
13.3.3	Interaction with Biomolecules	353
13.4	Emerging Strategies for Mitigating Plant Diseases via NPs	354
13.4.1	Techniques to Better Seed Germination and Plant Development	355
13.4.2	Advancements in Food Processing and Packaging Technologies	355
13.4.3	Stress Tolerance as a Key to Optimizing Crop Productivity	356
13.4.4	Nano-biofertilizers: Revolutionizing Soil Enhancement	356
13.4.5	Next-generation Delivery Mechanisms for Fertilizers and Nutrients	357
13.4.6	NP-based Approaches to Bacterial Disease Management	357
13.4.7	Role of NPs in Managing Viral Infections	357
13.4.8	Utilization of NPs for Managing Fungal Infections	361
13.4.9	NP-based Platforms for Effective Insecticide Application	361
13.4.10	Enhancing Crop Performance Through Genetic Improvement	362
13.4.11	Harnessing Nanosensors for Smart Agricultural Practices	362
13.5	Mitigation Strategies for Addressing NP-related Risks	363
13.5.1	Interaction of NPs with Cellular Surfaces	363

13.5.2	Innovative Solutions for Sustainable Practices	363
13.5.3	Regulatory Strategies for Controlling NPs' Risks	364
13.6	Conclusion and Future Prospects	364
	References	365

14 Challenges and Risk Assessment of Nanomaterial-based Chemicals Used for Sustainable Agriculture 377

Ranjani Ravikumar, Jayavardhini M, Sai Sidharth A, Vikky Rajulapati, and Philip Bernstein Saynik

14.1	Introduction	377
14.2	Nanofertilizers – Types	379
14.2.1	Action-based Nanofertilizers	379
14.2.2	Nutrient-based Nanofertilizers	381
14.2.3	Consistency-based Nanofertilizers	382
14.3	Risk Assessment	382
14.4	Uncertainties	383
14.5	Risk Management	384
14.6	Regulations and Safety Measures	385
14.6.1	United States	385
14.6.2	United Kingdom	386
14.6.3	Canada	386
14.6.4	Europe	387
14.6.5	Australia	388
14.6.6	Switzerland	388
14.6.7	Russia	388
14.6.8	China	388
14.6.9	South Korea	389
14.6.10	India	389
14.7	Ethical and Safety Concerns of Nanofertilizers and Nanopesticides	390
14.8	Conclusion	391
	References	391

Index 395