Contents

Preface *xiii*

1	Organocatalyzed King-Opening Polymerization of Cyclic
	Esters Toward Degradable Polymers 1
	Feng Li, Takuya Isono, and Toshifumi Satoh
1.1	General Introduction 1
1.2	Polymerization Mechanism 3
1.2.1	Nucleophilic Catalysts 3
1.2.2	Base Catalysts 4
1.2.3	Acid Catalysts 6
1.2.4	Ionic Catalysts 7
1.2.5	Bifunctional and Multifunctional Catalysts 9
1.3	Recent Trends in Organocatalyst Development 10
1.3.1	Higher Catalytic Efficiency 11
1.3.2	Higher Selectivity 12
1.3.3	Higher-Temperature Tolerance 17
1.3.4	Safety Considerations 19
1.4	Toward Higher Degradability and Recyclability 21
1.4.1	Incorporation of Chemically Labile Moieties into Polymer Chains for
	Higher Degradability 22
1.4.2	Development of Novel Chemically Recyclable Polyesters 25
1.5	Summary and Outlook 29
	References 30
2	Organocatalyzed Copolymerization of CO ₂ with Epoxide
	Toward Polycarbonate Synthesis 45
	Xiaoshuang Feng and Yves Gnanou
2.1	Introduction 45
2.2	Discovery of TEB Catalyzed CO ₂ /Epoxides Copolymerization 46
2.3	Development of TEB Catalyzed CO ₂ /Epoxides Copolymerization 50
2.4	Synthesis of CO ₂ -Based Block Copolymers 55
2.4.1	One-Step Ter-, Quater-Polymerization 55
2.4.2	Polycarbonate Block Copolymers from Orthogonal Polymerization 58

Contents	
2.4.3	All-Polycarbonate Block Copolymers 60
2.4.4	CO ₂ -Based Triblock Copolymers 62
2.5	Bifunctional Organoboron Catalysts 65
2.5.1	9-BBN Tethered with Ammonium Cations 65
2.5.2	9-BBN Tethered with Phosphonium Cations 67
2.5.3	Borinane Tethered with Ammonium Cations 68
2.6	Conclusions 69
	References 70
3	Organocatalyzed Ring-Opening Copolymerization of Cyclic
	Anhydride and Cyclic Ether (Acetal) 79
	Xun Zhang, Chengjian Zhang, and Xinghong Zhang
3.1	Introduction 79
3.2	The Copolymerization of Epoxide with Cyclic Anhydride 81
3.2.1	The Scope of Epoxides and Cyclic Anhydrides 81
3.2.2	Metal Catalysts 82
3.2.3	Organocatalysts 85
3.2.3.1	Organic Bases 86
3.2.3.2	Bicomponent Lewis Pair 88
3.2.3.3	Bifunctional Lewis Pair 92
3.3	The Copolymerization of Oxetane with Cyclic Anhydride 95
3.4	The Copolymerization of Tetrahydrofuran with Cyclic Anhydride 97
3.5	The Copolymerization of Cyclic Acetal (Aldehyde) with Cyclic
	Anhydride 100
3.6	Polyester-Based Block Copolymer 103
3.7	Conclusions and Outlook 105
	References 107
4	Organocatalysts for the Preparation of Degradable and
	Closed-Loop Recyclable Polyesters 115
	Yong Shen and Zhibo Li
4.1	Introduction 115
4.2	Catalytic Mechanism of Various Organocatalysts 116
4.2.1	Electrophilic Monomer Activation Mechanism 116
4.2.2	Nucleophilic Monomer Activation Mechanism 117
4.2.3	Chain-End Activation Mechanism 117
4.2.4	Bifunctional Activation Mechanism 118
4.3	Organocatalytic ROP of Lactones or Lactides 119
4.3.1	γ-Butyrolactone and its Derivatives 119
4.3.2	δ -Valerolactone and ϵ -Caprolactone 124
4.3.3	δ -Valerolactone Derivatives 129
4.3.4	Lactide 131
4.3.5	Large-Membered Lactones 135
4.4	Summary and Perspective 136
	References 137

5	Organo-Catalyst Catalyzed Ring Opening Polymerization of
	N-Carboxyanhydrides 147
	Chongyi Chen and Zhibo Li
5.1	Introduction 147
5.2	Organo-Catalysts for NCA Ring Opening Polymerization 149
5.2.1	Organo-Catalysts Before 2010 149
5.2.2	Amine-Based Organo-Catalysts 150
5.2.3	Other Organo-Catalysts 156
5.2.4	Autocatalysis of NCA Ring Opening Polymerization 160
5.3	Conclusions and Future Prospects 165
	Abbreviations 166
	References 166
6	Organocatalyst Catalyzed Ring Opening Polymerization of
	O(S)-Carboxyanhydride to Produce High Performance
	Poly(thio)esters 173
	Yinuo Zhu and Youhua Tao
6.1	Introduction 173
6.2	Synthesis and Purification of O(S)-Carboxyanhydride Monomers 175
6.3	The Racemization of α -Proton 175
6.4	Organocatalyst for OCA Polymerization 176
6.4.1	ROP Catalyzed by DMAP 176
6.4.2	ROP Catalyzed by N-Heterocyclic Carbenes 178
6.4.3	ROP Catalyzed by Acid/Base Adducts 178
6.4.4	Thiourea-Based Organocatalysts for OCAs Polymerization 179
6.5	Organocatalyst for SCA Polymerization 182
6.6	Conclusion and Perspective 185
	References 186
7	Organocatalyzed Stereoselective Ring-Opening
	(Co)Polymerization 191
	Shaofeng Liu and Daniel Taton
7.1	Introduction 191
7.2	Mechanisms in the Organocatalyzed Stereoselective ROP 192
7.3	Organic Acids for Stereoselective ROP of rac-LA 193
7.4	Organic Bases for Stereoselective ROP of rac-LA 196
7.4.1	N-Heterocyclic Carbenes (NHCs) 196
7.4.2	Amidines and Guanidines 198
7.4.3	Phosphazenes 198
7.5	Dual Organocatalysts 200
7.5.1	Mono-Component Bifunctional Organocatalysts 200
7.5.2	Bi-Component Organocatalysts 203
7.6	Organocatalysts for Stereoselective ROP of Other Cyclic Monomers 211
7.7	Conclusion 212
	Acknowledgements 213
	References 213

8	Ring-Opening Polymerization of Epoxides Through Organocatalysis 219
	Lijun Liu, Yuxuan Zhou, Xingyu Tang, and Junpeng Zhao
8.1	Introduction 219
8.2	Catalyst and Mechanism 220
8.2.1	Single-Component Catalyst 221
8.2.1.1	Base 221
8.2.1.2	Acid 223
8.2.2	Two-Component Catalyst 225
8.3	Synthesis of Functionalized Polyether 227
8.3.1	End-Group Functionalization 228
8.3.2	Pendant-Group Functionalization 230
8.4	Synthesis of Polyether-Based Block Copolymer 232
8.4.1	One-Pot Two-Step Block Copolymerization 232
8.4.2	One-Step Block Copolymerization 236
8.5	Conclusion and Outlook 240
	References 240
9	Organo-Borane Catalysis for Ring Opening Polymerization of
	Epoxides 253
	Xiaowu Wang and Zhibo Li
9.1	Introduction 253
9.2	Fundamentals of Borane Compounds 253
9.2.1	General Characteristics of Boron and Boranes 253
9.2.2	Bond Length and Strengths 254
9.2.3	Characterization 255
9.2.4	Lewis Acidity of (Organo)Borane 255
9.3	Et ₃ B-Mediated ROP of Epoxides 256
9.3.1	Introduction of ROP of Epoxides 256
9.3.2	Et ₃ B-Based Binary Lewis Pair Systems in the ROP of Epoxides 258
9.3.3	Mechanism of Et ₃ B Mediated ROP of Epoxides 260
9.3.4	Poly(alkylene oxide) Structures: Novel and Innovative Polyether
	Architectures 261
9.4	Modified Organoborane Mediated ROP of Epoxides 264
9.4.1	One-Component Ammonium Borane-Based Lewis Pair Systems
	Mediated ROP of Epoxides 265
9.4.2	One-Component Phosphonium Borane-Based Lewis Pair Systems
	Mediated ROP of Epoxides 269
9.4.3	Silicon-Based Borane Lewis Pair System 272
9.4.4	Macromolecular Organoborane Mediated ROP of Epoxides 272
9.4.5	Poly(alkylene oxide) Structures: Innovative Polyether Architectures 274
9.5	Chiral Organoborane Mediated Asymmetric ROP of Epoxides 279
9.6	Conclusion and Outlook 281
	References 283

10	Organocatalyst for Ring-Opening Polymerization of Cyclosiloxanes Toward Polysiloxanes 289	
	Na Zhao, Yuetao Liu, and Zhibo Li	
10.1	Introduction 289	
10.2	Anionic ROP of Cyclosiloxanes 291	
10.3	Phosphazene-Catalyzed Anionic ROP of Cyclosiloxanes 291	
10.3.1	Schwesinger's Phosphazene Bases 293	
10.3.2	Phosphazenium Hydroxide P ₅ OH 293	
10.3.3	Cyclic Trimeric Phosphazene Base (CTPB) 295	
10.3.4	Trisphosphazene Base – C ₃ N ₃ -Me-P ₃ 297	
10.3.5		
10.4	Guanidines-Catalyzed Anionic ROP of Cyclosiloxanes 297	
10.5	Phosphorus Ylides-Catalyzed Anionic ROP of Cyclosiloxanes 302	
10.6	NHC-Catalyzed Anionic ROP of Cyclosiloxanes 303	
10.7	Conclusion 304	
	References 305	
11	Organic Lewis Pair in Polymer Synthesis 309 Mingqian Wang, Zhiqiang Ding, Bin Wang, and Yuesheng Li	
11.1	Lewis Pair Catalytic Ring-Opening Polymerization of Cyclic Esters 309	
11.2	Mechanisms for Lewis Pair-Catalyzed ROP of Cyclic Esters 310	
11.3	Lewis Pairs Used for ROP of Cyclic Ester 311	
11.3.1	Organoboron-Based Lewis Pair 311	
11.3.2	Organoaluminum-Based Lewis Pair 313	
11.3.3	Organozinc-Based Lewis Pair 315	
11.3.4	Metal Halide-Based LPs 318	
	References 322	
12	Organocatalysts for Radical Polymerization 325	
	Chenyu Wu, Qiang Ma, Baoshan Hou, Zhilei Wang, Zikuan Wang, and	
	Saihu Liao	
12.1	Photocontrolled Organocatalyzed Radical Polymerization 325	
12.2	Organocatalyzed Atom Transfer Radical Polymerization (O-ATRP) 328	
12.2.1	Mechanism of O-ATRP 328	
12.2.2	Polynuclear Aromatic Hydrocarbons 328	
12.2.3	Phenothiazine Derivatives 329	
12.2.4	Dihydrophenazine Derivatives 330	
12.2.5	Phenoxazine Derivatives 331	
12.2.6	Dimethylacridine Derivatives 332	
12.2.7	Organic Donor-Acceptor Scaffolds 333	
12.2.8	Heteroatom-Doped Anthanthrene Derivatives 334	
12.2.9	Other Classes 335	
12.3	Photoinduced Electron/Energy Transfer Reversible	
	Addition-Fragmentation Chain Transfer (PET-RAFT) 337	

x	Contents	
	12.3.1	Mechanism of PET-RAFT 337
	12.3.2	Porphyrin Derivatives 338
	12.3.3	Fluorescein Derivatives 340
	12.3.4	Phthalocyanine Derivatives 340
	12.3.5	Other Classes 340
	12.4	Structure-Property-Performance Relationships 341
	12.4.1	Structure-Property-Relationships 341
	12.4.2	Photon Absorption 342
	12.4.2.1	Theory for Absorption Spectrum 342
	12.4.2.2	Full Width at Half Maximum 343
	12.4.2.3	Maximum Absorption Wavelength 344
	12.4.2.4	Molar Extinction Coefficient 344
	12.4.3	Excited-State Evolution 346
	12.4.3.1	Quantum Yield for Long-Lived State 346
	12.4.3.2	Theory for Fluorescence 347
	12.4.3.3	Theory for Internal Conversion 348
	12.4.3.4	Theory for Intersystem Crossing 349
	12.4.4	Activation 350
	12.4.5	Deactivation 352
	12.4.6	Property-Performance Relationships 353
	12.5	Outlook 354
		References 355
	13	Organocatalyst-Catalyzed Non-Radical
		Photopolymerizations 365
		Yun Liao and Saihu Liao
	13.1	Introduction 365
	13.2	Organocatalysts for Photocontrolled Cationic Polymerization 366
	13.3	Organocatalysts for Photocontrolled Ring-Opening Polymerization 377
	13.4	Organocatalysts for Photocontrolled Ring-Opening Metathesis
		Polymerization (ROMP) 384
	13.5	Organocatalysts for Photocontrolled Step-Growth Polymerization 387
		References 392
	14	Enzyme-Catalyzed Controlled Radical Polymerization 399
		Ruoyu Li and Zesheng An
	14.1	Introduction 399
	14.2	Enzymatic Deoxygenation in RAFT Polymerization 400
	14.3	Enzymatic Initiation of RAFT Polymerization 403
	14.4	Enzymatic Deoxygenation in ATRP 407
	14.5	Enzyme-Catalyzed ATRP 408
	14.6	Conclusions 411
		Acknowledgments 411
		References 411

15	Organocatalyst-Catalyzed Degradation of Polymers 419
	Ge Yang and Zhibo Li
15.1	Introduction 419
15.2	Chemical Degradation of Functional Polymers 420
15.2.1	Organic Bases and Organic Acids 420
15.2.2	Lonic Liquids and Acid-Base Salts 423
15.3	Photocatalytic Degradation of Non-Functional Polymers 426
15.4	Conclusion 427
	References 429

Index 433