Contents

Preface *xi*

	Introduction of Triboelectric Nanogenerator 1
I.1	What is a Triboelectric Nanogenerator (TENG)? 1
I.2	First-Principle Theoretical Model 1
I.3	Equivalent Circuit Models and Basic Operation Modes 2
I.3.1	Equivalent Circuit Models 2
I.3.2	CS Mode TENG 5
I.3.3	LS Mode TENG 6
I.3.4	SE Mode TENG 10
I.3.5	FT Mode TENG 14
I.4	Energy Conversion and Electromechanical Coupling Models 19
I.5	Summary 21
	References 21
1	Models of Triboelectric Effect 25
- 1.1	Introduction 25
1.2	Thermionic Emission Method 26
1.3	Material-Dependent Charge Transfer Mechanism and Model 29
1.4	Liquid-Solid Contact Electrification Mechanism 32
1.5	Environmental and Material Effects on Charge Transfer 34
1.5.1	Temperature Effect on the CE 35
1.5.2	Impact of Material Surface 36
1.5.3	Stress/Strain States and Others 36
1.6	Potential Applications 37
1.7	Summary 38
	References 38
2	Discharge Effects in TENG 45
2.1	Introduction 45
2.1.1	Fundamental Knowledge About the Discharge 45
2.1.2	Discharge Effects in TENG 48

vi	Contents	
	2.2	Theoretical Studies of Breakdown Discharge in
		Contact-Separation-Based TENGs 49
	2.3	Experimental Verification and Quantitative Measurements 49
	2.3.1	Experimental Verification of the Threshold Air Breakdown Charge
		Density σ_t 49
	2.3.2	Quantitative Measurement of Breakdown Discharge Points 51
	2.4	Photon Generation 56
	2.4.1	Radio-Frequency EM-Wave Photon Generation 56
	2.4.2	Visible Light Photon Generation 57
	2.5	Potential Applications 58
	2.6	Summary 58
		References 59
	3	Figure-of-Merit of Triboelectric Nanogenerator 61
	3.1	Introduction 61
	3.2	Effective Maximized Energy Output 62
	3.2.1	Traditional Methods to Characterize the TENG 62
	3.2.2	V-Q Plot 63
	3.2.3	Effective Maximized Energy Output Per Cycle 65
	3.3	Figure-of-Merit 67
	3.3.1	Figure-of-Merits as the Common Standard 67
	3.3.2	Revised Figure-of-Merits Based on $E_{\rm em}$ Considering Breakdown
		Discharge Effect 68
	3.3.3	Standardized Assessment of a Piezoelectric Nanogenerator, Compared
		with TENGs 69
	3.4	Output Energy Density 70
	3.5	Environmental and Techno-Economic Analysis 72
	3.6	Potential Applications 74
	3.7	Summary 74
		References 74
	4	Output Promotion by Environment 79
	4.1	High Vacuum Environment 79
	4.2	High Atmospheric Pressure and High-Breakdown-Limit Gas
		Environments 80
	4.3	Interfacial Liquid Lubrication 83
	4.4	Humidity 86
	4.5	Summary 89
		References 89
	5	DC-TENG: A New Paradigm 93
	5.1	Introduction 93
	5.2	Basic Principle 94
	5.3	Physical Model 95
	5.4	Optimization Methods for DC-TENG 96

5.4.1	Improving Triboelectrification 97
5.4.2	Enhancing Electrostatic Breakdown 99
5.4.3	Advanced Structure Design 102
5.5	DC-TENG for Energy Harvesting 103
5.6	DC-TENG for Self-Powered Sensing 105
5.7	Hybrid of AC-TENG and DC-TENG 106
5.8	Summary 109
	References 110
6	Promotion of Contact Electrification at Liquid-Solid
	Interface 113
6.1	Introduction 113
	References 120
7	Output Promotion of Triboelectric Nanogenerator by
	Electromechanical Structures 125
7.1	Introduction 125
7.2	Charge Excitation Mechanism 128
7.2.1	External Charge Excitation 128
7.2.2	Self-Charge Excitation 130
7.2.3	Charge Excitation for Sliding Mode TENG 133
7.3	Other Promotion Strategies 135
7.3.1	Charge-Space Accumulation Mechanism 135
7.3.2	Ternary Tribolayer Architecture 137
7.3.3	Interfacial Insulating Liquid 139
7.4	Summary 140
	References 141
8	Power Management and Effective Energy Storage 145
8.1	Introduction 145
8.2	Theoretical Basis of Energy Management for TENG 147
8.3	Mechanical Switched Converter 150
8.3.1	Travel Switch 150
8.3.1.1	
8.3.1.2	Parallel Switch 152
8.3.1.3	Switch Capacitor Converter 152
8.3.2	Electrostatic Switch 154
8.3.2.1	Spark Switch 154
8.3.2.2	Electrostatic Switch 156
8.3.3	Application Demonstration 157
8.4	Electronic Switch Converter 159
8.4.1	Integrated Circuit 159
8.4.2	MOSFET 161
8.4.3	SCR and Triode 163
8.5	Transformer Converter 165

iii	Contents	
	8.5.1	Transformer Converter for EMS 165
	8.5.2	Application Demonstration 167
	8.6	Conclusion and Perspective 167
		References 170
	9	Tribotronics 175
	9.1	Introduction 175
	9.2	Tribo-Potential 176
	9.3	Triboelectricity Modulate Field Effect 177
	9.4	Tribotronic Transistor 181
	9.4.1	Theory of Tribotronic Transistor 181
	9.4.2	Structure of Tribotronic Transistor 184
	9.5	Tribotronic Functional Devices 186
	9.5.1	Tribotronics for Information Sensing 186
	9.5.2	Tribotronics for Active Control 190
	9.5.3	Tribotronics for Artificial Synapse 193
	9.6	Conclusion 196
		References 198
	10	Tribophotonics 203
	10.1	Introduction 203
	10.2	Tribophotonics: Concept, Origin, Characteristics, and Potential
		Applications 205
	10.3	Tribo-Induced EM-Wave Generation (TIEG) 207
	10.3.1	Intrinsic-Displacement-Current-Induced Fully Self-Powered Wireless
		Sensing System 208
	10.3.2	Time-Varying Magnetic Field-Based Fully Self-Powered Wireless Sensing System 209
	10.3.3	Discharge-Induced Displacement-Current-Based Fully Self-Powered
	10.5.5	Wireless Sensing System 212
	10.4	Tribo-Induced Light Propagation Tuning (TILPT) 215
	10.4.1	Tribo-Induced Light ON/OFF Control 215
	10.4.2	Tribo-Induced Light Direction Control 217
	10.4.3	Tribo-Induced Light Intensity Control 217
	10.4.4	Tribo-Induced Light Color Control 219
	10.5	Triboelectrification-Induced Electroluminescence (TIEL) 220
	10.6	Tribo-Assisted Spectrometry (TAS) 225
	10.7	Potential Applications and Perspectives 227
	10.8	Challenges and Summary 228
		References 229
	11	TENG-Based Wearable Biomechanical Sensors and
		Human-Machine Interface 237
	11.1	Introduction 237
	11.2	TENG-Based Biomedical Sensing 238
		U

11.2.1	Pulse 238
11.2.2	Respiration 241
11.2.3	Joint Movement 243
11.3	TENG-Based Human-Machine Interface 245
11.3.1	Eye Movement 245
11.3.2	Voice/Auditory 247
11.3.3	Gesture 248
11.3.4	Touch/Tactile 251
11.4	Summary 254
	References 254
12	TENG as the High-Voltage Source 259
12.1	Introduction 259
12.2	Overview of Materials and Universal Methods for TENG's Performance
	Enhancement 261
12.2.1	Materials Selection 261
12.2.2	Surface Modification of Materials 262
12.2.3	Enhancement of TENG's Voltage Performance by Charge Injection
	Methods and Vacuum Protection 265
12.2.4	Enhancement of TENG's Voltage Performance by Charge
	Supplement 266
12.3	Artificial Muscle Based on Dielectric Elastomer and TENG 268
12.4	Microactuators Based on Piezoelectric Ceramics and TENG 272
12.5	Materials Polarized by the High Voltage Output From TENG 273
12.6	Electrostatic Manipulator Driven by TENG 278
12.7	Electrostatic Adsorption and Air Cleaning Based on TENG 282
12.8	Electronic Excitation and Ion Generation Powered by TENG 287
12.9	Summary and Perspectives 294
	References 296
	References 296

Index 299