Contents

1	Computation of Green's Functions for Ocean Tide Loading
1	Introduction
2	Equations of Motions and Rheology
3	Spheroidal and Toroidal Motions 6
4	Fluid Core
5	Resonance Effects
6	Boundary Conditions
7	Simple Earth Models and Love Numbers
8	Degree-1 Response and Translational Invariance
9	Numerical Methods
10	Rheology: Viscosity and Anelasticity
11	Green's Functions
12	Final Remarks
Аp	pendix 1: Lyapunov-Transformed Matrices
Ap	pendix 2: Analytical Solution for a Homogeneous Earth
	pendix 3: Analytical Solution for a Homogeneous Fluid Inner
•	Sphere
Ap	pendix 4: Tiny Fluid Sphere
	pendix 5: Gravity Green's Function and Kummer Transform 50
_	ferences
2	General Relativity and Space Geodesy
l	Background
	1.1 Introduction 54
	1.2 Basic Implications of GRT for Space Geodesy Techniques 56
2	Satellite Laser Ranging
	2.1 Shapiro Delay
	2.2 GRT Accelerations
	2.3 SLR Tests of General Relativity Theory
3	Global Positioning System
	3.1 Reference Frame Issues

xvi Contents

	3.2	Clock and Frequency Effects	76
	3.3	General Relativistic Accelerations	84
	3.4	Spatial Curvature Effect on Geodetic Distance	85
4	Very	Long Baseline Interferometry	85
	4.1	Gravitational Delay	85
	4.2	General Relativistic Tests Using VLBI	86
5	Conc	cluding Remarks	89
Re		es	90
3	Globa	al Terrestrial Reference Systems and Their Realizations	97
1	Intro	duction	97
2	Basic	c Concepts and Fundamentals	100
3	Inter	national Terrestrial Reference System	101
	3.1	ITRS Definition	101
	3.2	Positions and Displacements of Reference Points	103
4	Inter	national Terrestrial Reference Frame	106
	4.1	IERS Network	106
	4.2	History of ITRS Realizations	110
5	The	Latest Realization, the ITRF2008	112
	5.1	ITRF2008 Input Data	112
	5.2	ITRF2008 Data Analysis	114
	5.3	ITRF2008 Results	119
	5.4	Comparison of ITRF2008 and DTRF2008	120
	5.5	Transformation Parameters from ITRF2008	
		to Past ITRF Realizations	122
6	Disc	ussion and Challenges for the Future	124
	6.1	IERS Network, Co-Location Sites and Local Tie Vectors	125
	6.2	Input Data for the ITRF Computations	125
	6.3	Nonlinear Station Motions	126
	6.4	Effect of Large Earthquakes	127
	6.5	Combination Methodology and Datum Definition	128
Re	ference	es	129
4	Photo	ogrammetry	133
1		oduction	133
	1.1	Definition and Short History	133
	1.2	Applications and Limitations	136
2	Ima	ge Acquisition	137
	2.1	Aerial Cameras	137
	2.2	Planning the Photo Flight	149
3	Ima	ge Georeferencing	155
	3.1	Coordinate Systems in Photogrammetry	155
	3.2	Indirect Georeferencing	158
	3.3	Semi-Direct Georeferencing	165

Contents xvii

	3.4	Direct Georeferencing	167
4	lmag	ge Processing	171
	4.1	Stereoplotting	172
	4.2	Three-Dimensional Modelling	172
	4.3	Orthorectification	178
Re	ference	es	182
5	Regio	onal Gravity Field Modeling: Theory	
	and I	Practical Results	185
1	Intro	duction	185
2	Func	damentals of Physical Geodesy	187
	2.1	Reference Systems	187
	2.2	Newton's Law of Gravitation and Potential	192
	2.3	The Earth's Gravity Field	198
	2.4	The Geoid and Heights	201
	2.5	The Normal Gravity Field	208
	2.6	Temporal Gravity Field Variations and the Atmosphere	212
3	Grav	rity Field Modeling	217
	3.1	Geodetic Boundary Value Problems	217
	3.2	Linearization of the Boundary Conditions	218
	3.3	The Constant Radius Approximation	228
	3.4	Solutions to Molodensky's Boundary Value Problem	232
	3.5	Solutions to Stokes's Boundary Value Problem	235
	3.6	The Spectral Combination Technique	237
	3.7	Least-Squares Collocation	241
	3.8	Astronomical Leveling	244
	3.9	The Remove-Compute-Restore Technique	
		and Topographic Effects	247
4	Prac	tical Results	251
	4.1	Data Requirements	251
	4.2	The European Gravity and Geoid Project	255
	4.3	The European Gravity and Terrain Data	256
	4.4	Development of the European Quasigeoid Model EGG2008	261
	4.5	Evaluation of the European Quasigeoid Model EGG2008	272
	4.6	Summary and Outlook	281
Re	ference	es	282
_			200
6		larization and Adjustment	293
1		I: Regularized Solution to Ill-Posed Problems	293
1		oduction	293
2		table Analysis of Least Squares Solution	20/
2		l-Posed Observation Equation	294
3	_	ularized Solution to Ill-Posed Observation Equations	297
	3.1	Solution to Rank-Deficient Observation Equations	297
	3.2	Regularized Solution to Ill-Posed Observation Equations	298

xviii Contents

4	Determination of the Regularization Parameter	302
5	Numerical Cases	306
6	Summary	309
	Part II: Adjustment	310
7	Introduction	310
8	Least Squares Adjustment	310
	8.1 Least Squares Adjustment with Sequential	
	Observation Groups	312
9	Sequential Least Squares Adjustment	314
10	Conditional Least Squares Adjustment	315
	10.1 Sequential Application of Conditional Least	
	Squares Adjustment	317
11	Block-Wise Least Squares Adjustment	319
	11.1 Sequential Solution of Block-Wise Least	
	Squares Adjustment	321
12	Equivalently Eliminated Observation Equation System	323
	12.1 Diagonalized Normal Equation and the Equivalent	226
	Observation Equation	326
13	A Priori Constrained Least Squares Adjustment	327
	13.1 A Priori Parameter Constraints	328
	13.2 A Priori Datum	329
	13.3 Quasi-Stable Datum	331
14	Summary	333
Bib	liography	334
7	Very Long Baseline Interferometry for Geodesy and Astrometry	339
1	Introduction	340
1	1.1 Geometric Principle	340
	1.2 History and Technological Developments	341
	1.3 Data Acquisition	343
	1.4 Data Analysis	347
2	Theoretical Delays	348
2	2.1 Station Coordinates at the Time of Observation	348
	2.2 Earth Orientation	349
	2.3 General Relativistic Model for the VLBI Time Delay	351
	2.4 Troposphere Delay Modeling	355
	2.5 Antenna Deformation	358
	2.6 Axis Offsets	359
	2.7 Source Structure	360
	2.8 A Few Examples of Constituents of the Delay	360
3	Least-Squares Adjustment in VLBI	361
_	3.1 The Concept of Piecewise Linear Offsets	362
	3.2 Global VLBI Solutions	363
4	Results from Geodetic VLBI and the IVS	365

a	•
Contents	X1X
contents	AIA

5 The Next Generation VLBI System, VLBI2010	371
Index	377