Contents

1	Introduction					
	1.1	Overv	view of Approaches to Model Contact Problems	1		
	1.2	Discu	ssion – Why Covariant Approach?	13		
	1.3	On G	eometrical Approaches in Contact Mechanics	17		
	1.4		and Structure of the Book	17		
		1.4.1	Structure of the Current Book	18		
2	Differential Geometry of Surfaces and Curves					
	2.1	Definition of the Surface and Its Geometrical				
		Chara	acteristics	25		
		2.1.1	The Fundamental Tensors and Property of the Surface	26		
		2.1.2		28		
		2.1.3	-	31		
	2.2	Defini	ition of the Curve in 3D and Its Geometrical	01		
		acteristics	33			
		2.2.1		00		
			System. Serret-Frenet Formulas	34		
3	Clo	sest P	oint Projection Procedure and Corresponding			
			ar Coordinate System	35		
	3.1		st Point Projection Procedure for Arbitrary			
			ces	35		
			Formulation of the Closest Point Projection			
			Procedure in Geometrical Terms	38		
		3.1.2	Proximity Criteria for Different Surfaces	41		
	3.2		bility of the CPP Procedure for Surfaces – Allowable			
			Von-Allowable Domains	44		
		3.2.1	Reduction to 2D Plane Geometry – Solvability			
			Critoria and Uniqueness	11		

XIV Contents

		3.2.2	ű –	47
		3.2.3	Surface in 3D	47
		3.2.3	Hyperbolical Surface	49
	3.3	Closes	st Point Projection Procedure for Point-To-Curve	40
	0.0		ction and Corresponding Projection Domain	50
	3.4		st Point Projection Procedure for Curve-To-Curve	00
	9.4		act and Definition of Local Coordinate Systems	53
		3.4.1	Definition of a Local Coordinate System Attached	00
		5.4.1	to a Curve	55
		3.4.2	Analysis of Uniqueness and Existence of Solutions	00
		0.1.2	for the CPP: Definition of a Projection Domain	56
		3.4.3	Computational Issues of the CPP Procedure	62
4	Geo	metry	y and Kinematics of Contact	63
•	4.1		natics of the Surface-To-Surface Interaction	63
	1.1	4.1.1	Local Surface Coordinate System	64
		4.1.2	Spatial Curvilinear Local Coordinate System and	
		1.1.2	Its Characteristics	64
		4.1.3	Measure of Contact Interaction	
		1.1.0	for Surface-To-Surface Contact	66
		4.1.4	Spatial Basis Vectors and Metric Tensor	66
		4.1.5	Motion of a Slave Point	71
		4.1.6	Geometrical Interpretation of Covariant Derivative	
		2.2.0	and Numerical Realization	74
		4.1.7	Variation $\delta \xi^3$ and Its Linearization	77
		4.1.8	Variation $\delta \xi^i$ and Its Linearization	79
	4.2		natics of 2D Contact Interaction	83
		4.2.1	Closest Point Projection Procedure and	
			Corresponding Coordinate System	84
		4.2.2	2D Contact Kinematics	91
		4.2.3	Linearization of Variations $\delta \zeta$ and $\delta \xi$	92
	4.3	Kiner	natics of Segment (Deformable)-To-Analytical	
			d) Surfaces Contact (STAS) – Two Strategies	95
		$\dot{4}.3.1$	Rigid Surface Is a "Slave" Surface	95
		4.3.2	Rigid Surface Is a "Master" Surface	97
		4.3.3	Surfaces Allowing a Closed Form Solution for the	
			Penetration	98
	4.4	Kiner	natics of Point-To-Curve Interaction	105
	4.5	Kiner	natics of Curve-To-Curve Interaction	107
		4.5.1	Development of Beam-To-Beam and Edge-To-Edge	
			Contact	108
		4.5.2	Measures of Contact Interaction	109
		4.5.3	Rates and Variations of Measures for Contact	
			Interaction	119

Contents XV

		4.5.4	Linearization in a Covariant Form of Variations for	
			Contact Measures	113
	4.6	Kinen	natics of the Curve-To-Rigid-Surface Interaction	115
5	We		mulation of Contact Conditions	119
	5.1		Formulation of the Surface-To-Surface Contact	119
	5.2		Formulation of 2D Contact Interaction	122
	5.3		Formulation for Point-To-Curve Contact	122
	5.4		Formulation for Curve-To-Curve Contact	123
	5.5		Formulation for Curve-To-Rigid Surface Contact	127
	5.6		ne and Lagrangian Formulations of Non-Frictional	
			act Problems	128
	•	5.6.1	Choice of the Lagrange Multiplier Set μ	130
		5.6.2	Physical Meaning of the Non-penetration Terms	130
		5.6.3	Types of the Nitsche Approach	132
6			Constraints and Constitutive Equations for	
	Cor		Tractions	135
	6.1		ce-To-Surface Contact – Non-Frictional Case and	
		Isotro	pic Coulomb's Frictional Case	136
		6.1.1	Contact Constraints for Normal Contact	
			Conditions	136
		6.1.2	Tangential Contact Conditions. Evolution	
			Equations	138
		6.1.3	Return-Mapping Scheme for the Real Tangential	
			Traction	140
		6.1.4	Integration of Evolution Equations. Geometrical	
			Interpretation of the Return-Mapping Scheme	142
	6.2		ralization of Coulomb Friction Law into Complex	
			act Interface Law	143
		6.2.1	Vector Form of the Isotropic Equations	143
		6.2.2	General Interface Model	144
		6.2.3	Anisotropic Yield Function	146
		6.2.4	Tensor Representations for Anisotropy	148
	6.3		ation of the Anisotropic Adhesion-Friction Contact	
			em via the Principle of Maximum Dissipation	156
		6.3.1	Continuous Formulation	157
		6.3.2	Incremental Formulation	158
		6.3.3	Specification of Initial Conditions for the	
			Return-Mapping Scheme	161
		6.3.4	Derivation of the Sliding Incremental Displacement	
			$\Delta \xi^{sl}$ and Update Scheme for the History	4
			Variables	161
		6.3.5	Computational Aspects for Further Implementation	
			Considering Nonlinear and Constant Tensors	-163

XVI Contents

		6.3.6	Geometrical Interpretation of the Solution Process	164			
		6.3.7	Rheological Model of the Orthotropic Adhesion-				
			Friction Problem	167			
	6.4	-	sis of Various Models for Anisotropic Friction and				
		Adhes	sion	168			
		6.4.1	Orthotropic Coulomb Friction Law	169			
		6.4.2	Model for Orthotropic Contact Interfaces Including				
			Both Adhesion and Friction	171			
		6.4.3	Recovering Circular Motion for Polar Orthotropy	172			
	6.5	2D Co	ontact Problems – Evolution Equations for Contact				
			ions	173			
	6.6	Const	citutive Equations for Point-To-Curve Contact				
			action	174			
	6.7	Curve	e-To-Curve Contact – Constitutive Equations for				
		Conta	act Tractions	175			
		6.7.1	Normal Contact. Specification of Constitutive				
			Laws for the Traction N Coupled with Contact				
			Constraints for the Variable r	176			
		6.7.2	Tangential Contact. Specification of Constitutive				
			Laws for Tractions T_I Coupled with Contact				
			Constraints for the Variables s_I	178			
		6.7.3	Rotational Contact. Specification of a Constitutive				
			Law for the Rotational Moment M_I Coupled with				
			Contact Constraints for the Variables φ_I	180			
	6.8	Curve	e-To-Curve Contact: Rate of Contact Forces in a				
		Covar	riant Form	181			
		6.8.1	Covariant Form for Sticking	182			
		6.8.2	Covariant Form for Sliding	182			
	6.9	Curve	e-To-Rigid Surface Contact – Transformation of the				
		Conta	act Forces	182			
7	Lin	eariza [.]	tion of the Weak Forms – Tangent Matrices				
	in a		riant Form	185			
	7.1	Linea	Linearization of the Weak Form for the Surface-To-Surface				
		Conta	act	185			
		7.1.1	Linearization of the Normal Contact Part δW_c^N	187			
		7.1.2	Tangent Matrices for the Normal Contact				
			Part δW_c^N	188			
		7.1.3	Linearization of the Tangential Contact Part δW_c^T				
			- Case of Sticking	190			
		7.1.4	Linearization of the Tangential Contact Part δW_c^T				
			- Case of Sliding	192			
	7.2	Linea	rization of the Weak Form for the 2D Case	194			
		7.2.1	Tangent Matrix for the Normal Part	195			
		7.2.2	Tangent Matrix for the Tangential Part	196			

Contents XVII

	7.3		rization of the Weak Form for the Surface-To-Surface	
			act – Case of Coupled Anisotropic Adhesion-Friction	
			aces	19
		7.3.1	Linearization of the Tangential Part δW_c^T	19
	7.4		rization of the Weak Form for Point-To-Curve	
			action	20
	7.5		rization of the Weak Form for Curve-To-Curve	
			act	20:
		7.5.1	First Part, Representing Geometrical Nonlinearity	20
		7.5.2	Constitutive Part for Sticking	20
		7.5.3	o o	20
	7 0	7.5.4		20
	7.6		rization of the Weak Form for Curve-To-Rigid	20
		Surfac	ce Contact	20
8			Co-Surface Contact – Various Aspects for	
	_		ntations within the Finite Element Method	20
	8.1		e Element Discretization for Various Contact	
			paches – NTS, STS and STAS Contact Elements	20
		8.1.1	Node-To-Segment (NTS) Contact Approach	21
		8.1.2	Segment-To-Segment (STS) Contact Approach	21
		8.1.3	Segment-To-Analytical Surface (STAS) Contact	
			Approach	21
	8.2		us Approximations of Contact Surfaces Defined by	
			e Elements	21
		8.2.1	• · · · · · · · · · · · · · · · · · · ·	21
		8.2.2	Closed Form Solution for CPP Procedure for	
			Linear Segment	21
		8.2.3	Quadrilateral Segment with Quadratic Lagrangian	
			Approximation	21
		8.2.4	Surface Smoothing Techniques in a Covariant	
			Approach	21
	8.3		Frictional Contact Analysis: Node-To-Segment	
			oach	23
		8.3.1	9 0	23
		8.3.2	0 1	23
	0.4	8.3.3	Discussion	23
	8.4		Frictional Contact Analysis: Large Penetration	
		-	ithm	23
		8.4.1	Large Penetration Algorithm – General	
			Considerations	23
		8.4.2	Numerical Examples	23
		8.4.3	Wedge Plate Indented into Cantilever Plate	23
		8.4.4	Semicircular Plate Indented into Rectangular	_
			Plate	24

XVIII Contents

		8.4.5	Bending of a Beam over a Rigid Cylinder	243
		8.4.6	Bending of a Beam over a Rigid Sphere	246
		8.4.7	Discussion	249
	8.5	Frictio	onal Contact Analysis: Node-To-Segment Approach	249
		8.5.1	Global Solution Scheme. Summary of the Results	250
		8.5.2	Sliding of a Block. Linear Approximation of the	
		0.0.0	Contact Surfaces. Two Types of a Frictional	
			Contact Problem	250
		8.5.3	Sliding of a Block. Quadratical Approximation of	
		0.0.0	the Contact Surfaces	257
		8.5.4	Discussion	262
	8.6		outation of Contact Integrals – Mortar Type	202
	0.0	_	et	263
		8.6.1	Convergence Test for the Integration Algorithm:	200
		0.0.1	Computation of the Energy Associated with the	
			Penalty Functional	264
		060	Integration Schemes with Subdomains	265
	0.7	8.6.2	ent-To-Segment (Mortar) Approach: Analysis of the	200
	8.7	~	Test	268
		8.7.1	Classical Contact Patch Test – Linear	200
		0.1.1	Approximations	269
		8.7.2	Contact Patch Test with Smooth Surfaces	$\frac{203}{271}$
	0.0		ent-To-Analytical Surface (STAS) Approach: Various	211
	8.8	_	, ,	272
			Cations	$\frac{272}{273}$
		8.8.1		$\frac{275}{275}$
		8.8.2	Free Bending of a Metal Sheet on Two Cylinders	210
		8.8.3	Deep Drawing of a Cylindrical Pot – Combination	201
		0.0.4	of STAS Contact Elements	281
		8.8.4	Deep Drawing – Test for the Quality of Shell	
			Elements as Well as for the Quality of the Contact	000
			Algorithm	282
		8.8.5	Discussion	286
	8.9		mentation of the Nitsche Approache	287
		8.9.1	Gauss Point-Wise Substituted Formulation	287
		8.9.2	Bubnov-Galerkin-Wise Partial Substituted	000
			Formulation	288
	•	8.9.3	Numerical Example	289
9	Spe	cial C	ase of Implementation – Reduction into	
•		Case		293
	9.1		e Element Implementation of 2D Contact	
	0.1		action	293
		9.1.1	Linear NTS Contact Element	294
		9.1.2	Closed Form Solution for CPP Procedure	295
		9.1.2	Return-Mapping Scheme – 2D Case	296
		0.1.0	Total Happing Contains 22 Capo	_00

Contents XIX

		$9.1.4 \\ 9.1.5$	Treatment of Special Cases	297
		9.1.6	Reversible Loading	298
			Integration Scheme	299
	9.2		Remarks on Additional Developments	300
		_	ithms A A	304
		9.2.1	Sliding of a Block. Linear Approximation of the Contact Surfaces. Reversible Loading Process	304
		9.2.2	Drawing of an Elastic Strip into a Channel with Sharp Corners	304
	9.3	Discus	ssion	313
	0.0			
10			tation of Contact Algorithms with High	
				315
			luction	315
	10.2		Element Implementation of High Order ct FE	317
			Computation of Contact Integrals	319
			Contact Layer - Rigid Surface (CLRS) Finite	010
		10.2.2	Element	319
		10.2.3	Contact Layer - Contact Layer (CLCL) Finite	010
			Element	320
		10.2.4	Lagrange Multiplier Method for Normal Traction	322
		10.2.5	Global Solution Scheme	323
	10.3	Nume	rical Examples for High Order Contact Layer Finite	
			ents	323
		10.3.1	Loading Case 1. Contact Zone within One	
			Element	325
		10.3.2	Loading Case 2. Contact Zone within Several	222
		10 2 2	Elements	326
		10.3.3	Discussion	329
11	Ani	sotron	oic Adhesion-Friction Models – Some	
			Details of Implementation and Numerical	
			-	331
	11.1	Introd	luction	331
			Various Models for Friction	331
			Available Finite Element Models	333
	11.2		ples of the Finite Element Implementation of the	
			ed Anisotropic Adhesion-Friction Model	334
		11.2.1	Point-to-Analytical Surface Contact Element.	
			Linear Surface Approximation of a	005
			Deformable Body	-335

XX Contents

	11.2.2 Point-to-Analytical Surface Contact Element.	
	Arbitrary Surface Approximation of the Deformable	000
	Body	336
	11.2.3 Node-to-Segment Approach. Deformable	
	Anisotropic Contact Surface	337
	11.3 Numerical Examples Illustrating Effects of the Coupled	
	Anisotropic Adhesion-Friction Model	339
	11.3.1 Linear Constant Orthotropy on the Plane	339
	11.3.2 Polar Orthotropy on a Plane. Large Displacement	
	Problem	347
	11.3.3 Spiral Orthotropy on the Cylinder	351
	11.3.4 Discussion	355
	11.4 Symmetrization of Various Friction Models Based on an	
	Augmented Lagrangian Approach	355
	11.4.1 Structure of Matrices after the Linearization	
	Process	356
	11.4.2 Augmented Lagrangian Method and Symmetric	
	Uzawa Algorithm	358
	11.5 Numerical Examples for Augmented Lagrangian Method	362
	11.5.1 Small Sliding Problem. Constant Orthotropy	363
	11.5.2 Large Sliding Problem. Polar Orthotropy	363
	11.5.3 Discussion	364
12	Experimental Validations of the Coupled Anistropic	
14	Experimental validations of the Coupled Amstropic	
	Adhasian-Friction Model	367
	Adhesion-Friction Model	367 367
	12.1 Introduction	367
	12.1 Introduction	367 368
	12.1 Introduction	367 368 369
	12.1 Introduction	367 368 369 370
	12.1 Introduction	367 368 369 370 372
	12.1 Introduction	367 368 369 370 372 373
	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2	367 368 369 370 372 373 373
	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3	367 368 369 370 372 373 373
	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4	367 368 369 370 372 373 374 374
	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5	367 368 369 370 372 373 373
	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5 12.3.6 Calibration of the Theoretical Curve by Extremal	367 368 369 370 372 373 374 374 375
	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5 12.3.6 Calibration of the Theoretical Curve by Extremal Values	367 368 369 370 372 373 374 374 375
	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5 12.3.6 Calibration of the Theoretical Curve by Extremal	367 368 369 370 372 373 374 374 375
13	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5 12.3.6 Calibration of the Theoretical Curve by Extremal Values	367 368 369 370 372 373 374 374 375
13	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5 12.3.6 Calibration of the Theoretical Curve by Extremal Values 12.4 Discussion	367 368 369 370 372 373 374 374 375
13	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5 12.3.6 Calibration of the Theoretical Curve by Extremal Values 12.4 Discussion Various Aspects of Implementation of the	367 368 369 370 373 373 374 375 378
13	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5 12.3.6 Calibration of the Theoretical Curve by Extremal Values 12.4 Discussion Various Aspects of Implementation of the Curve-To-Curve Contact Model	367 368 369 370 373 373 374 375 378 378
13	12.1 Introduction 12.2 Experimental Investigation 12.2.1 Experimental Setup 12.2.2 Experimental Results 12.3 Calibration of Parameters for Different Models 12.3.1 Case 1 12.3.2 Case 2 12.3.3 Case 3 12.3.4 Case 4 12.3.5 Case 5 12.3.6 Calibration of the Theoretical Curve by Extremal Values 12.4 Discussion Various Aspects of Implementation of the Curve-To-Curve Contact Model 13.1 General Structure of Tangent Matrices for CTC Contact	367 368 369 370 373 373 374 375 378 381 381

Contents XXI

		13.1.4	Tangent Matrices for Rotational Sticking	383
			Tangent Matrices for Rotational Sliding	383
	13.2		al Vector	384
			Part for Normal Interaction	384
			Part for Tangential Interaction	384
			Part for Moment (Rotational) Interaction	385
	13.3		ination with Various Finite Element Models of the	
			nuum for Curve-To-Curve Contact	385
			Implementation of Curve-To-Curve Contact	
			Algorithm – Linear Element for Edge-to-Edge	
			Contact	385
		13.3.2	Combination of Finite Beam Elements	
			with the Curve-To-Curve Contact Algorithm	389
		13.3.3	Development of Special "Solid-Beam" Elements for	000
		20.0.0	Beam-to-Beam Contact	391
	13.4	Numer	rical Examples for Curve-To-Curve Contact	393
	20.2		Bending of a Flexible Beam by a Rigid Beam.	000
		10.1.1	Non Frictional Case	394
		13.4.2	Analysis of Contact for Intersecting Beams	398
			Discussion	405
			Bending of a Flexible Beam by a Rigid Beam –	200
		10.1.1	Comparison of Three Finite Element Models	405
		13 4 5	Contact between Rings	408
			Tying of a Knot	409
			Discussion	412
		10.1.1	Dipodobioli	
14	Fri	ctional	l Interaction of a Spiral Rope and a Cylinder	
	- 3]	D-Gen	eralization of the Euler-Eytelwein Formula	
	Cor	sideri	ng Pitch	413
	14.1	Equili	brium Equations for the Rope in Space	413
	14.2	Solution	on of the Equilibrium Equation for	
		a Spir	al Line (Helix)	416
	14.3	Conclu	usions	422
Rei	eren	ces		423
Lis	t of I	Langua	ages	437
Ind	ex		•	439