Contents

Preface XIII

1	A Survey of Long-Term Energy Resources 1
1.1	Introduction 1
1.1.1	Direct Solar Influx 6
1.1.1.1	Properties of the Sun 6
1.1.1.2	An Introduction to Fusion Reactions on the Sun 10
1.1.1.3	Distribution of Solar Influx for Conversion 13
1.1.2	Secondary Solar-Driven Sources 14
1.1.2.1	Flow Energy 14
1.1.2.2	Hydroelectric Power 18
1.1.2.3	Ocean Waves 20
1.1.3	Earth-Based Long-Term Energy Resources 22
1.1.3.1	Lunar Ocean Tidal Motion 22
1.1.3.2	Geothermal Energy 24
1.1.3.3	The Earth's Deuterium and its Potential 25
1.1.4	Plan of This Book 26
2	Physics of Nuclear Fusion: the Source of all
	Solar-Related Energy 27
2.1	Introduction: Protons in the Sun's Core 28
2.2	Schrodinger's Equation for the Motion of Particles 30
2.2.1	Time-Dependent Equation 32
2.2.2	Time-Independent Equation 32
2.2.3	Bound States Inside a One-Dimensional Potential
	Well, $E > 0$ 33
2.3	Protons and Neutrons and Their Binding 35
2.4	Gamow's Tunneling Model Applied to Fusion
	in the Sun's Core 35
2.5	A Survey of Nuclear Properties 43

VIII	Contents	
------	----------	--

3	Atoms, Molecules, and Semiconductor Devices 49
3.1	Bohr's Model of the Hydrogen Atom 49
3.2	Charge Motion in Periodic Potential 52
3.3	Energy Bands and Gaps 53
3.3.1	Properties of a Metal: Electrons in an Empty Box (I) 57
3.4	Atoms, Molecules, and the Covalent Bond 60
3.4.1	Properties of a Metal: Electrons in an Empty Box (II) 66
3.4.2	Hydrogen Molecule Ion H ₂ ⁺ 69
3.5	Tetrahedral Bonding in Silicon and Related Semiconductors 71
3.5.1	Connection with Directed or Covalent Bonds 72
3.5.2	Bond Angle 72
3.6	Donor and Acceptor Impurities; Charge Concentrations 73
3.6.1	Hydrogenic Donors and Excitons in Semiconductors, Direct and Indirect Bandgaps 75
3.6.2	Carrier Concentrations in Semiconductors 76
3.6.3	The Degenerate Metallic Semiconductor 79
3.7	The PN Junction, Diode I–V Characteristic, Photovoltaic Cell 80
3.8	Metals and Plasmas 84
4	Terrestrial Approaches to Fusion Energy 87
4.1	Deuterium Fusion Demonstration Based on Field Ionization 88
4.1.1	Electric Field Ionization of Deuterium (Hydrogen) 94
4.2	Deuterium Fusion Demonstration Based on Muonic Hydrogen 96
4.2.1	Catalysis of DD Fusion by Mu Mesons 101
4.3	Deuterium Fusion Demonstration in Larger Scale Plasma
	Reactors 102
4.3.1	Electrical Heating of the Plasma 103
4.3.2	Scaling the Fusion Power Density from that in the Sun 104
4.3.3	Adapt DD Plasma Analysis to DT Plasma as in ITER 104
4.3.4	Summary, a Correction, and Further Comments 110
5	Introduction to Solar Energy Conversion 115
5.1	Sun as an Energy Source, Spectrum on Earth 115
5.2	Heat Engines and Thermodynamics, Carnot Efficiency 117
5.3	Solar Thermal Electric Power 119
5.4	Generations of Photovoltaic Solar Cells 122
5.5	Utilizing Solar Power with Photovoltaics: the Rooftops of
	New York versus Space Satellites 125
5.6	The Possibility of Space-Based Solar Power 126
6	Solar Cells Based on Single PN Junctions 133
6.1	Single-Junction Cells 133
6.1.1	Silicon Crystalline Cells 136
6.1.2	GaAs Epitaxially Grown Solar Cells 141
6.1.3	Single-Junction Limiting Conversion Efficiency 141

6.2	Thin-Film Solar Cells versus Crystalline Cells 145
	·
6.3 6.3.1	CIGS (CuIn _{1-x} Ga _x Se ₂) Thin-Film Solar Cells 147 Printing Cells onto Large-Area Flexible Substrates 147
6.4	Printing Cells onto Large-Area Flexible Substrates 147 CdTe Thin-Film Cells 151
6.5	Dye-Sensitized Solar Cells 153
6.5.1	•
0.3.1	Principle of Dye Sensitization to Extend Spectral Range to the Red 154
6.5.2	Questions of Efficiency 155
6.6	Polymer Organic Solar Cells 155
6.6.1	A Basic Semiconducting Polymer Solar Cell 156
0.0.1	A basic semiconducting rotymer solar Cen 150
7	Multijunction and Energy Concentrating Solar Cells 157
7.1	Tandem Cells, Premium and Low Cost 158
7.1.1	GaAs-based Tandem Single-Crystal Cells, a Near Text-Book
7.4.0	Example 158
7.1.2	A Smaller Scale Concentrator Technology Built on Multijunction Cells 162
7.1.3	Low-Cost Tandem Technology: Advanced Tandem Semiconducting
	Polymer Cells 163
7.1.3.1	Band-Edge Energies in the Multilayer Tandem Semiconductor
	Polymer Structure 165
7.1.3.2	Performance of the Advanced Polymer Tandem Cell 166
7.1.4	Low-Cost Tandem Technology: Amorphous Silicon:H-Based Solar Cells 166
7.2	Organic Molecules as Solar Concentrators 169
7.3	Spectral Splitting Cells 171
7.4	Summary and Comments on Efficiency 172
7.5	A Niche Application of Concentrating Cells on Pontoons 172
8	Third-Generation Concepts, Survey of Efficiency 175
8.1	Intermediate Band Cells 175
8.2	Impact Ionization and Carrier Multiplication 177
8.2.1	Electrons and Holes in a 3D "Quantum Dot" 180
8.3	Ferromagnetic Materials for Solar Conversion 182
8.4	Efficiencies: Three Generations of Cells 185
9	Cells for Hydrogen Generation; Aspects of Hydrogen Storage 187
9.1	Intermittency of Renewable Energy 187
9.2	Electrolysis of Water 187
9.3	Efficient Photocatalytic Dissociation of Water into Hydrogen
	and Oxygen 188
9.3.1	Tandem Cell as Water Splitter 190
9.3.2	Possibility of a Mass Production Tandem Cell
	Water-Splitting Device 191
9.3.3	Possibilities for Dual-Purpose Thin-Film Tandem Cell Devices 193

x	Contents	
·	9.4	The "Artificial Leaf" of Nocera 193
	9.5	Hydrogen Fuel Cell Status 194
	9.6	Storage and Transport of Hydrogen as a Potential Fuel 195
	9.7	Surface Adsorption for Storing Hydrogen in High Density 196
	9.7.1	Titanium-Decorated Carbon Nanotube Cloth 199
	9.8	Economics of Hydrogen 200
	9.8.1	Further Aspects of Storage and Transport of Hydrogen 200
	9.8.2	Hydrogen as Potential Intermediate in U.S. Electricity
		Distribution 201
	10	Large-Scale Fabrication, Learning Curves, and Economics Including Storage 203
	10.1	Fabrication Methods Vary but Exhibit Similar Learning Curves 203
	10.2	Learning Strategies for Module Cost 205
	10.3	Thin-Film Cells, Nanoinks for Printing Solar Cells 207
	10.4	Large-Scale Scenario Based on Thin-Film CdTe or CIGS Cells 209
	10.4.1	Solar Influx, Cell Efficiency, and Size of Solar Field Required to Meet Demand 210
	10.4.2	to Meet Demand 210 Economics of "Printing Press" CIGS or CdTe Cell Production
		to Satisfy U.S. Electric Demand 211
	10.4.3	Projected Total Capital Need, Conditions for Profitable
		Private Investment 212
	10.5	Comparison of Solar Power versus Wind Power 214
	10.6	The Importance of Storage and Grid Management to
		Large-Scale Utilization 215
	10.6.1	Batteries: from Lead–Acid to Lithium to Sodium Sulfur 217
	10.6.2	Basics of Lithium Batteries 218
	10.6.3	NiMH 220
	11	Prospects for Solar and Renewable Power 223
	11.1	Rapid Growth in Solar and Wind Power 223
	11.2	Renewable Energy Beyond Solar and Wind 225
	11.3	The Legacy World, Developing Countries, and the Third World 226
	11.4	Can Energy Supply Meet Demand in the Longer Future? 227
	11.4.1	The "Oil Bubble" 227
	11.4.2	The "Energy Miracle" 229
		Appendix A: Exercises 231
		Exercises to Chapter 1 231
		Exercises to Chapter 2 232
		Exercises to Chapter 3 233
		Exercises to Chapter 4 234
		Exercises to Chapter 5 236
		Exercises to Chapter 6 236

Exercises to Chapter 7 237 Exercises to Chapter 8 238 Exercises to Chapter 9 238 Exercises to Chapter 10 238 Exercises to Chapter 11 *2*39

Glossary of Abbreviations 241

References 245

Index 251