

Contents

Preface *xi*
Acknowledgments *xv*

Part I Classical and Advanced Control Theory: Simulation and Examples 1

1	Field Elements of Classic Control Systems	3
1.1	The Principles of Control (Industry 5.0)	3
1.2	Field Elements of Classic and Modern Control Systems	6
1.2.1	Advantages	7
1.2.2	Disadvantages	7
1.2.3	Why Control and Monitor?	7
1.3	Process Modeling in Control Systems Design	11
1.4	Ordinary Differential Equations and Laplace	13
1.5	Linear Systems	18
1.6	Nonlinear Dynamical Systems	20
1.7	Stability Theory	21
1.8	Systems' Identification	23
1.8.1	Recursive Least Squares Method (Applied to Chapter 8)	23
1.8.2	Parameter Identification	25
1.8.3	Ordinary Least Squares	25
1.8.4	Recursive Least Squares (Applied to Chapter 6)	26
1.9	General Methodology Based on Recursive Least Squares for Nonlinear Systems	28
1.10	Optimal Controllers	33
1.10.1	Linear Quadratic Regulator	33
1.10.2	Optimal PI	36
1.10.3	Pontryagin Maximum Principle	44
1.11	Observer-based Controllers	45
1.12	Examples of Modeling, Simulation, and Practical Platforms for Industrial Processes	46

1.12.1	LabVIEW	47
1.13	Sensors	48
1.13.1	ESP32	48
1.13.2	Specifications	49
1.13.3	Sensor Infrastructure	49
1.14	Module MQ	50
1.15	Sensor Operation	50
1.15.1	Sensor Calibration	51
1.15.2	Methane Sensor Programming Codes	52
1.15.3	Carbon Dioxide Sensor Programming	54
1.15.4	Carbon Dioxide Vernier Probe Programming	56
1.15.5	MATLAB Function	56
	References	57
2	Advanced Control Theory Fundamentals	63
2.1	Nonlinear Controllers and Advanced Control Theory	63
2.2	Nonlinear Control	67
2.3	Accessibility Rank Condition	67
2.4	Steady-output Controllability	69
2.5	Controllable and Reachable Subspaces	70
2.6	Controllable Matrix Test	70
2.7	Eigenvector Test for Controllability	70
2.8	Popov–Belevitch–Hautus	71
2.9	Lyapunov Test for Controllability	71
2.10	Sliding-mode Control Systems	71
2.10.1	Sliding surface design	72
2.10.2	Control Law First-order SMC	73
2.11	Filippov’s	73
2.12	Lyapunov Method	74
2.13	Sontag Universal Formula	74
2.14	Control of Industrial Time-delay Systems	77
2.14.1	Delayed Systems	77
2.14.2	Extension of LCF to Time-delay Systems	79
2.15	Linear Time Systems with Delays and the Predictive Control Scheme	83
2.15.1	LTI System with Input Delay	83
2.15.2	Predictive Control for Systems with Input Delay	83
2.15.3	LTIS with State Delay	84
2.15.4	LTIS with State Delay and Input Delay	87
2.15.5	Prediction-based Control for LTIS with State Delay and Input Delay	87
2.15.6	Dynamic Predictor-based Control for LTIS with State Delay and Input Delay	88
2.15.7	Linear Systems with State Delay and Two Input Delays	89

- 2.15.8 Predictor-based Control for LTIS with State Delay and Two Input Delays 89
- 2.15.9 Dynamic Predictor-based Control for Linear Systems with Both State Delay and Two Input Delays 92
- References 93

Part II Advanced Control Methods for Industrial Process 99

3 Design of a Nonlinear Controller to Regulate Hydrogen Production in a Microbial Electrolysis Cell 101

- 3.1 Introduction 101
- 3.2 Mathematical Models 104
- 3.3 Bioprocess Modeling 105
- 3.3.1 Unstructured Kinetic Models 105
- 3.4 MEC Modeling 106
- 3.5 Control Preliminaries 109
- 3.6 Methodology 111
- 3.7 Results and Discussion 111
- 3.8 System Model 114
- 3.9 Local Controllability Properties of the MEC Model 117
- 3.10 Measuring Hydrogen 121
- 3.11 Stability Test of the Proposed Controller 123
- 3.12 Conclusions 128
- References 128

4 Comparison of Linear and Nonlinear State Observer Design Algorithms for Monitoring Energy Production in a Microbial Fuel Digester 135

- 4.1 Introduction 135
- 4.1.1 Anaerobic Biodigester 138
- 4.1.2 Key Biodigester Parameters 138
- 4.2 Biodigester Operation 141
- 4.2.1 Wet Biodigester 141
- 4.2.2 Dry Biodigester 142
- 4.2.3 Continuous Biodigester 142
- 4.2.4 Semicontinuous Biodigester 143
- 4.2.5 Anaerobic Digestion Model No. 1 143
- 4.3 State Estimation 147
- 4.4 Luenberger Observer 148
- 4.5 Sliding-mode Estimator 149
- 4.6 Proposed Nonlinear Estimator 152
- 4.7 Estimator Performance Index 155
- 4.8 Mathematical Modeling and Steady States 155
- 4.8.1 Proposed Biodigester Model 156
- 4.8.2 Stationary States 160

4.8.3	Local Observability Analysis	161
4.8.4	Simulation and Comparison of Estimators	165
4.8.5	Simulation of Disturbance with Sensor Noise	168
4.8.6	Sensor Proposal	171
4.9	Conclusions	175
	References	175
5	Optimal Control Approach Applied to a Fed-batch Reactor for Wastewater Treatment Plants	183
5.1	Introduction	183
5.2	Metal and Contaminants' Removal	184
5.3	Operation Bioreactor	185
5.4	Dynamic Model	186
5.5	Proposed Model	187
5.5.1	Sulfate-reduction Processes	187
5.6	Isolation and Propagation of a Sulfate-reducing Bacteria Consortium	188
5.7	Analytic Methods	189
5.8	Results and Discussion	189
5.8.1	Sulfate-reduction Processes	189
5.8.2	Sensitivity Analysis	194
5.8.3	Optimal Nonlinear Control of Finite Horizon	200
5.8.4	Optimal Control of Finite Horizon for the Bioreactor	201
5.8.5	Experimental System	203
5.9	Conclusion	206
	References	207
6	Experimental Implementation of the Dynamic Predictive-based Control to a Coupled Tank System	213
6.1	Introduction	213
6.2	Coupled Tank System Description	214
6.2.1	Mathematical Nonlinear Model	214
6.2.2	Model Linearization	217
6.2.3	Parameter Identification of the Coupled Tank System	219
6.2.4	Implementation of the Recursive Least Square on LabVIEW	221
6.2.5	Discretization of the Dynamic Predictors	224
6.2.6	Gain Tuning and Poles	225
6.2.7	Implementation of the Dynamic Predictive Control on LabVIEW	226
6.3	Experimental Results	228
6.4	Conclusion	229
	References	229

7	Temperature Robust Control Applied to a Tomato Dehydrator with the CLKF Approach	233
7.1	Introduction	233
7.2	Dehydrator: Modeling and Description	234
7.2.1	Description	235
7.2.2	Mathematical Model	236
7.3	Control Synthesis	241
7.4	System Parameters	244
7.5	Experimental Results	246
7.6	Wi-Fi Monitoring System	250
7.7	Conclusions	256
	References	256
8	Design of an Adaptive Robust Controller: Temperature Regulation of a Heat Exchanger Prototype	261
8.1	Introduction	261
8.2	Methodology	263
8.3	Robust and Adaptive Control Design	263
8.4	Representation of the Control System	264
8.5	Robust P and PI Control Law Design	265
8.6	Adaptative P and PI Control Law Design	269
8.7	Experimental Results	276
8.8	MATLAB Code	276
8.9	Experimental Platform and Identification	278
8.10	Identification by Least Squares	282
8.11	Additional Tools	284
8.12	Robust P and PI Control	285
8.13	Adaptative Robust P and PI Control	287
8.14	Conclusions	290
	References	291
	Credits	293
	Acronyms	295
	Index	299