Contents

The	First Pr	oblem of Algebraic Regression
{Ax	$x = y A \in$	$\mathbb{R}^{n \times m}$, $y \in \mathcal{R}(A) \sim \text{rk } A = n = \dim \mathbb{Y}$, MINOS
1-1	Introdu	ection
	1-11	The Front Page Example
	1-12	The Front Page Example: Matrix Algebra
	1-13	The Front Page Example: MINOS, Horizontal
		Rank Partitioning
	1-14	The Range $\mathcal{R}(f)$ and the Kernel $\mathcal{N}(f)$
	1-15	The Interpretation of MINOS
1-2	Minim	um Norm Solution (MINOS)
	1-21	A Discussion of the Metric of the Parameter
		Space X
	1-22	An Alternative Choice of the Metric of the
		Parameter Space X
	1-23	G_x -MINOS and Its Generalized Inverse
	1-24	Eigenvalue Decomposition of G_x -MINOS:
		Canonical MINOS
1-3	Case S	tudy
	1-31	Fourier Series
	1-32	Fourier-Legendre Series
	1-33	Nyquist Frequency for Spherical Data
1-4	 Specia 	l Nonlinear Models
	1-41	Taylor Polynomials, Generalized Newton Iteration
	1-42	Linearized Models with Datum Defect
1-5	Notes	

			oblem of Probabilistic Regression: roblem
			ss–Markov Model with Datum Defects, LUMBE
2-	_		Uniformly Minimum Bias Estimator (LUMBE)
2-	-		quivalence Theorem of G_x -MINOS and S -LUMBE
2-			ole
		•	
			Problem of Algebraic Regression
			system of linear observational equations
3-	- l		uction
		3-11	The Front Page Example
		3-12	The Front Page Example in Matrix Algebra
		3-13	Least Squares Solution of the Front Page
			Example by Means of Vertical Rank Partitioning
		3-14	The Range $\mathcal{R}(f)$ and the Kernel $\mathcal{N}(f)$,
			Interpretation of "LESS" by Three Partitionings
3-	-2	The Le	east Squares Solution: "LESS"
		3-21	A Discussion of the Metric of the Parameter
			Space X
		3-22	Alternative Choices of the Metric of the
		3 22	Observation \(\mathbb{Y} \)
		3-23	G _x -LESS and Its Generalized Inverse
		3-24	Eigenvalue Decomposition of G_v -LESS:
		J-2 4	Canonical LESS
2	-3	Coco	Study
5-	-5	3-31	Canonical Analysis of the Hat Matrix, Partial
		3-31	
		2 22	Redundancies, High Leverage Points
		3-32	Multilinear Algebra, "Join" and "Meet", the
			Hodge Star Operator
		3-33	From A to B: Latent Restrictions, Grassmann
			Coordinates, Plücker Coordinates
		3-34	From B to A: Latent Parametric Equations,
			Dual Grassmann Coordinates, Dual Plücker
			Coordinates
		3-35	Break Points
3.	-4	Specia	al Linear and Nonlinear Models: A Family of
		Means	s for Direct Observations
3-	-5	A His	torical Note on C.F. Gauss and A.M. Legendre
T	ho (Sacond	Problem of Probabilistic Regression
			iss-Markov model without datum defect
	-}		uction
4	- 1	4-11	The Front Page Example
			Estimators of Type BLUUE and BIQUUE of
		4-12	
			the Front Page Example

Contents xv

		4-13	BLOOK and BIQUOK of the Fight rage	
			Example, Sample Median, Median	
			Absolute Deviation	19
		4-14	Alternative Estimation Maximum	
			Likelihood (MALE)	20
	4-2	Setup	of the Best Linear Uniformly Unbiased Estimator	20
		4-21	The Best Linear Uniformly Unbiased	
			Estimation $\hat{\xi}$ of ξ : Σ_y -BLUUE	20
		4-22	The Equivalence Theorem of G _v -LESS and	
			Σ_{y} -BLUUE	21
	4-3	Setun	of the Best Invariant Quadratic Uniformly	
			sed Estimator	21
		4-31	Block Partitioning of the Dispersion	
			Matrix and Linear Space Generated	
			by Variance-Covariance Components	21
		4-32	Invariant Quadratic Estimation of	
			Variance-Covariance Components of Type IQE	22
		4-33	Invariant Quadratic Uniformly Unbiased	
			Estimations of Variance-Covariance	
			Components of Type IQUUE	22
		4-34	Invariant Quadratic Uniformly Unbiased	
			Estimations of One Variance Component	
			(IQUUE) from $\Sigma_{\mathbf{v}}$ -BLUUE: HIQUUE	22
		4-35	Invariant Quadratic Uniformly Unbiased	
			Estimators of Variance Covariance	
			Components of Helmert Type: HIQUUE	
			Versus HIQE	23
		4-36	Best Quadratic Uniformly Unbiased	_,
			Estimations of One Variance Component: BIQUUE	23
		4-37	Simultaneous Determination of First	_,
			Moment and the Second Central Moment,	
			Inhomogeneous Multilinear Estimation, the	
			E-D Correspondence, Bayes Design with	
			Moment Estimations	2
				_
5			Problem of Algebraic Regression	
			$ A \in \mathbb{R}^{n \times m}, y \notin \mathcal{R}(A) \sim \text{rk}A < \min\{m, n\}\}$	20
	5-1	Introd	uction	20
		5-11	The Front Page Example	20
		5-12	The Front Page Example in Matrix Algebra	26
		5-13	Minimum Norm: Least Squares Solution of	
			the Front Page Example by Means of Additive	
			Rank Partitioning	26
			_	

		5-14	Minimum Norm: Least Squares Solution				
			of the Front Page Example by Means of				
			Multiplicative Rank Partitioning	272			
		5-15	The Range R(f) and the Kernel N(f)				
			Interpretation of "MINOLESS"				
			by Three Partitionings	276			
	5-2	MINO	LESS and Related Solutions Like Weighted				
		Minim	num Norm-Weighted Least Squares Solutions	283			
		5-21	The Minimum Norm-Least Squares Solution:				
			"MINOLESS"	283			
		5-22	(G_x, G_y) -MINOS and Its Generalized Inverse	293			
		5-23	Eigenvalue Decomposition of				
			(G_x, G_y) -MINOLESS	297			
		5-24	Notes	301			
	5-3		lybrid Approximation Solution: α-HAPS				
		and Ty	khonov-Phillips Regularization	302			
6	The '	Third F	Problem of Probabilistic Regression				
U			ss-Markov model with datum defect	305			
	6-1		of the Best Linear Minimum Bias Estimator of				
			BLUMBE	308			
		6-11	Definitions, Lemmas and Theorems	310			
		6-12	The First Example: BLUMBE Versus BLE,				
			BIQUUE Versus BIQE, Triangular				
			Leveling Network	317			
	6-2	Setup	of the Best Linear Estimators of Type hom BLE,				
			S-BLE and hom a-BLE for Fixed Effects	332			
	6-3		nuous Networks	345			
		6-31	Continuous Networks of Second Derivatives Type	346			
		6-32	Discrete Versus Continuous Geodetic				
			Networks	357			
7	Owar	datamm	inad System of Manlinear				
′	Overdetermined System of Nonlinear Equations on Curved Manifolds						
		aconsistent system of directional observational equations 3					
	7-1		luction	362			
	7-2		nal Geodesic Distance: MINGEODISC	365			
	7-3		al Models: From the Circular Normal				
		-	bution to the Oblique Normal Distribution	370			
		7-31	A Historical Note of the von Mises Distribution	370			
		7-32	Oblique Map Projection	372			
		7-33	A Note on the Angular Metric	375			
	7-4		Study	376			

Contents xvii

8		Fourth Problem of Probabilistic Regression ial Gauss–Markov model with random effects The Random Effect Model Examples				
9	The Fifth Problem of Algebraic Regression: The System of Conditional Equations: Homogeneous and					
	Inho 9-1	nogeneous Equations: $\{By = Bi \text{ versus } -c + By = Bi\}$ G_y -LESS of a System of a Inconsistent Homogeneous				
	9-2	Conditional Equations				
	9-3	Examples				
10	The I	Fifth Problem of Probabilistic Regression				
		ral Gauss-Markov model with mixed effects				
	10-1	Inhomogeneous General Linear Gauss-Markov Model				
		Fixed Effects and Random Effects				
	10-2	Explicit Representations of Errors in the General				
	10.0	Gauss-Markov Model with Mixed Effects				
	10-3	An Example for Collocation				
	10-4	Comments				
11	The Sixth Problem of Probabilistic Regression					
		e Random Effect Model – "errors-in-variable"				
	11-1	The Model of Error-in-Variables or Total Least Squares				
	11-2	Algebraic Total Least Squares for the Nonlinear				
		System of the Model "Error-in-Variables"				
	11-3	Example: The Straight Line Fit				
	11-4	The Models SIMEX and SYMEX				
	11-5	References				
12	The Nonlinear Problem of the 3d Datum Transformation					
	and the Procrustes Algorithm					
	12-1	The 3d Datum Transformation and the Procrustes Algorithm				
	12-2	The Variance: Covariance Matrix of the Error Matrix E				
		12-21 Case Studies: The 3d Datum Transformation				
		and the Procrustes Algorithm				
	12-3	References				
13		The Sixth Problem of Generalized Algebraic Regression the system of conditional equations with unknowns -				
		ıss–Helmert model)				
	13-1	Variance-Covariance-Component Estimation in the				
		Linear Model $\mathbf{A}\mathbf{x} + \varepsilon = \mathbf{y}, \mathbf{y} \notin \mathcal{R}(\mathbf{A})$				
	13-2	Variance-Covariance-Component Estimation in the				
	. =	Linear Model $B\varepsilon = Bv - c$, $Bv \notin \mathcal{R}(A) + c$				

xviii Contents

	13-3		
		Linear Model $\mathbf{A}\mathbf{x} + \varepsilon + \mathbf{B}\varepsilon = \mathbf{B}\mathbf{y} - \mathbf{c}, \mathbf{B}\mathbf{y} \notin \mathcal{R}(\mathbf{A}) + \mathbf{c}$	485
	13-4	The Block Structure of Dispersion Matrix D{y}	489
14	Speci	al Problems of Algebraic Regression and Stochastic	
	Estim	nation	493
	14-1	The Multivariate Gauss-Markov Model: A Special	
		Problem of Probabilistic Regression	493
	14-2	<i>n</i> -Way Classification Models	498
		14-21 A First Example: 1-Way Classification	499
		14-22 A Second Example: 2-Way Classification	
		Without Interaction	503
		14-23 A Third Example: 2-Way Classification	
		with Interaction	509
		14-24 Higher Classifications with Interaction	514
	14-3	Dynamical Systems	517
15	Algel	oraic Solutions of Systems of Equations	
13		ar and Nonlinear Systems of Equations	527
	15-1	Introductory Remarks	527
	15-2	Background to Algebraic Solutions	528
	15-3	Algebraic Methods for Solving Nonlinear	320
	13-3	Systems of Equations	
		15-31 Solution of Nonlinear Gauss–Markov Model	532 532
		15-32 Adjustment of the combinatorial subsets	552
	15-4	Examples	556
	15-5	Notes	563
	15-5	Notes	202
A	Tenso	or Algebra, Linear Algebra, Matrix Algebra,	
•-		ilinear Algebra	571
	A-1	Multilinear Functions and the Tensor Space \mathbb{T}_q^p	572
	A-2	Decomposition of Multilinear Functions into	
		Symmetric Multilinear Functions Antisymmetric	
		Multi-linear Functions and Residual Multilinear	
		Functions $TT_q^p = \mathbb{S}_q^p \oplus \mathbf{A}_q^p \oplus \mathbb{R}_q^p \dots$	578
	A-3	Matrix Algebra, Array Algebra, Matrix Norm	
		and Inner Product	584
	A-4	The Hodge Star Operator, Self Duality	587
	A-5	Linear Algebra	592
	11.5	A-51 Definition of a Linear Algebra	593
		A-52 The Diagrams "Ass", "Uni" and "Comm"	595
		A-53 Ringed Spaces: The Subalgebra	575
		"Ring with Identity"	597
		A-54 Definition of a Division Algebra and	571
		Non-Associative Algebra	598
		NUIT-7455UCIALIYU 7412UUIA	270

Contents xix

		A-55	Lie Algebra, Witt Algebra	598		
		A-56	Definition of a Composition Algebra	59 9		
	A-6	Matrix	Algebra Revisited, Generalized Inverses	602		
		A-61	Special Matrices: Helmert Matrix, Hankel			
			Matrix, Vandemonte Matrix	606		
		A-62	Scalar Measures of Matrices	612		
		A-63	Three Basic Types of Generalized Inverses	618		
	A-7	Compl	ex Algebra, Quaternion Algebra, Octonian			
			ra, Clifford Algebra, Hurwitz Theorem	619		
		A-71	Complex Algebra as a Division Algebra as			
			well as a Composition Algebra, Clifford			
			algebra Cl(0, 1)	620		
		A-72	Quaternion Algebra as a Division Algebra			
			as well as a Composition Algebra, Clifford			
			algebra C1(0, 2)	622		
		A-73	Octanian Algebra as a Non-Associative			
			Algebra as well as a Composition Algebra,			
			Clifford algebra with Respect to $\mathbb{H} \times \mathbb{H}$	629		
		A-74	Clifford Algebra	633		
В	Samr	sling Die	stributions and Their Use: Confidence			
D	_	_	Confidence Regions	637		
	B-1		t Vehicle: Transformation of Random Variables	638		
	B-2		ond Vehicle: Transformation of Random Variables	642		
	B-3		t Confidence Interval of Gauss–Laplace	012		
	ВЗ	Normally Distributed Observations μ , σ^2 Known, the				
		Three Sigma Rule				
		B-31	The Forward Computation of a First	648		
		2 31	Confidence Interval of Gauss-Laplace			
			Normally Distributed Observations: μ , σ^2 Known	653		
		B-32	The Backward Computation of a First	001		
		D 32	Confidence Interval of Gauss-Laplace			
			Normally Distributed Observations: μ , σ^2 Known	659		
	B-4	Sampli	ing from the Gauss–	00,		
	Σ.	_	e Normal Distribution: A Second			
		-	lence Interval for the Mean, Variance Known	662		
		B-41	Sampling Distributions of the Sample Mean	002		
		2	$\hat{\mu}$, σ^2 Known, and of the Sample Variance $\hat{\sigma}^2$	677		
		B-42	The Confidence Interval for the Sample Mean,	0,,		
			Variance Known	688		
	B-5	Sampli	ing from the Gauss–	000		
			the Normal Distribution: A Third Confidence			
			al for the Mean, Variance Unknown	692		
		B-51	Student's Sampling Distribution of the	372		
		231	Random Variable $(\hat{\mu} - \mu)/\hat{\sigma}$	692		

		B-52	The Confidence Interval for the Mean,		
			Variance Unknown		
		B-53	The Uncertainty Principle		
	B-6		ing from the Gauss-		
		•	e Normal Distribution: A Fourth Confidence		
		Interva	If or the Variance		
		B-61	The Confidence Interval for the Variance		
		B-62	The Uncertainty Principle		
	B-7	Sampli	ing from the Multidimensional Gauss-Laplace		
		Norma	Il Distribution: The Confidence Region for the		
			Parameters in the Linear Gauss–Markov Model		
	B-8		limensional Variance Analysis, Sampling from		
		the Mu	ultivariate Gauss-Laplace Normal Distribution		
		B-81	Distribution of Sample Mean		
			and Variance-Covariance		
		B-82	Distribution Related to Correlation Coefficients		
C	Stati	stical No	otions, Random Events and Stochastic Processes		
	C-1		nts of a Probability Distribution, the Gauss-		
			e Normal Distribution and the Quasi-Normal		
		Distrib	oution		
	C-2	Error I	Propagation		
	C-3	Useful	Identities		
	C-4	Scalar	- Valued Stochastic Processes of One Parameter		
	C-5	Charac	cteristic of One Parameter Stochastic Processes		
	C-6	Simple	e Examples of One Parameter Stochastic Processes		
	C-7				
		C-71	Definition of the Wiener Processes		
		C-72	Special Wiener Processes: Ornstein-		
			Uhlenbeck, Wiener Processes with Drift,		
			Integral Wiener Processes		
	C-8	Specia	al Analysis of One Parameter Stationary		
		Stocha	astic Process		
		C-81	Foundations: Ergodic and Stationary Processes		
		C-82	Processes with Discrete Spectrum		
		C-83	Processes with Continuous Spectrum		
		C-84	Spectral Decomposition of the Mean and		
			Variance-Covariance Function		
	C-9	Scalar	-, Vector-, and Tensor Valued Stochastic		
			sses of Multi-Parameter Systems		
		C-91	Characteristic Functional		
		C-92	The Moment Representation of Stochastic		
			Processes for Scalar Valued and Vector Valued		
			Quantities		
		C-93	Tensor-Valued Statistical Homogeneous and		
			Isotropic Field of Multi-Point Systems		

Contents xxi

D	Basics of Groebner Basis Algebra			
	D-1	Definitions	887	
	D-2	Buchberger Algorithm	889	
		D-21 Mathematica Computation of Groebner Basis	889	
		D-22 Maple Computation of Groebner Basis	891	
	D.3	Gauss Combinatorial Formulation		
Ref	erence	s	895	
Ind	ex		1011	