Contents

Preface ---- V

Acknowledgments ---- VII

Part I: Fundamentals

Chapter 1

Introduction to composite materials, laminate theory, and extended laminate theory —— 3

1.1	General —— 3
1.2	Characteristics of fiber-reinforced epoxy composite materials (from
	manufacturing considerations) —— 3
1.2.1	Transformation behavior of thermoset resin during curing —— 5
1.2.2	Coefficients of thermal expansion (or contraction) —— 7
1.2.3	Prepregs — 7
1.3	Lay-up sequences —— 8
1.4	Composite behavior during curing and cooling —— 10
1.4.1	Material behavior during curing —— 11
1.5	Laminate theory —— 13
1.5.1	General formulation —— 13
1.5.2	Deformed shape —— 18
1.6	Extended laminate theory by Hyer —— 20
1.7	Physical explanation for the occurrence of different shapes —— 24
1.8	Laminates made of lay-up sequences $[0_{2m}/90_{2n}]$ — 26
1.8.1	For 0° layers —— 26
1.8.2	For 90° layers —— 26
1.8.3	For the special case where $m = n = p$ — 28
1.8.4	In eqs. (1.58)–(1.65), if $p = 0.5$ (the case of the [0/90] laminate) —— 28
1.8.5	Experiments —— 31
1.9	Effect of geometrical dimensions on the bifurcation point —— 32
1.9.1	Finite element simulation to illustrate the change in shape —— 33
1.10	Conclusions —— 34
	References —— 35

Chapter 2

Differences between regular 4D printing (4DP) and 4D printing of composites (4DPC) —— 37

2.1 Differences between short, discontinuous fibers and long, continuous fibers —— **37**

2.2	Differences in the method of deposition of materials —— 39
2.3	Secondary processes —— 40
2.4	The mechanism for the change of shape —— 41
2.4.1	For 4DP —— 41
2.4.2	For 4DPC —— 42
2.5	Conclusion —— 44
	References —— 44
Chapter 3	
Procedure	for 4D printing of composites —— 45
3.1	Determination of the feasibility of whether the part can be made using 4DPC —— 45
3.2	"
3.3	Determination of the lay-up sequence —— 47 Denosition of layers or strips of propress on a flat mold. 47
	Deposition of layers or strips of prepregs on a flat mold —— 47
3.3.1 3.3.2	Hand lay-up (HLU) —— 47
	Automated fiber placement (AFP) —— 48
3.4	Bagging the stack of layers —— 49
3.5	Heating and curing the stack of layers —— 50
3.5.1 3.6	Heating and curing multiple samples simultaneously —— 52
	Using the structure as is after curing —— 52
3.7	Constrained structures —— 53
3.8	A-structures — 53
3.9	Conclusion —— 54
	References —— 54
Chapter 4	
Nonlinear	aspects of the shape transformation of composite structures made
by 4D prin	ting of composites —— 55
4.1	Proposed procedure —— 57
4.1.1	First increment —— 58
4.1.2	Second increment —— 58
4.1.3	Third increment —— 59
	Reference —— 60
Part II: D	ifferent structures
Chapter 5	
U-structur	es —— 65
5.1	S-shaped structures —— 65
5.2	Composite flower —— 66
5.3	Leaf springs —— 68

5.3.1	Procedure to develop the composite leaf spring using 4DPC —— 71				
5.3.2	Elastic axis —— 73				
5.3.3	Equivalent flexural stiffness —— 75				
5.3.4	Effect of different stacking sequences on the radius of curvature using laminate theory: selection of lay-up sequence for leaf spring —— 75				
5.3.5	Explanation for the behavior of the composite spring made by 4DPC — 78				
5.4	Letters of the alphabet —— 85				
5.4.1	Principles of the mechanism —— 85				
5.4.2	Letter "a" 86				
5.4.3	Letter "b" —— 87				
5.4.4	Letter "C" —— 88				
5.4.5	Letter "d" —— 90				
5.5	Composite structures made of fiber orientations other than 0° or 90° —— 92				
5.5.1	Laminate made of [45°/-45°] stacking sequence —— 93				
5.5.2	Laminate made of [0/45] stacking sequence —— 97				
5.6	Conclusion —— 107				
5.7	Environmental effects —— 108				
5.7.1	Effect of heat —— 108				
5.7.2	Effect of moisture absorption on radius of curvature —— 117				
	Appendix —— 124				
	References —— 126				
Chapter 6					
C-structure					
6.1	Composite omega stiffener —— 127				
6.1.1	General —— 127				
6.1.2	Lay-up sequence —— 128				
6.1.3	Discussion —— 130				
6.2	Corrugated cores for sandwich constructions —— 131				
6.2.1	Introduction —— 131				
6.2.2	Application example —— 133				
6.2.3	Conclusion —— 135				
	References —— 135				
Chapter 7					
A-structure					
7.1	General aspects —— 137				
7.2	A-circular cylinders —— 137				
7.2.1	Comparison with other tubes of equivalent weight —— 142				

7.3	A-cones with circular cross section —— 143
7.3.1	Introduction —— 143
7.3.2	Manufacturing procedure using 4DPC —— 144
7.3.3	Lay-up sequences —— 148
7.3.4	Relationship between dimensions of the flat stack and those of the
	cone shape —— 148
7.3.5	Mechanical testing for compression properties —— 149
7.3.6	Discussion —— 154
7.3.7	Strain results —— 155
7.3.8	Finite element method for the determination of the deformed
	shape —— 157
7.3.9	Comparison between straight fiber finite element method and curved
	fiber finite element method —— 169
7.4	Conclusion —— 171
	References —— 171

Part III: Design space

Chapter 8

Expansion of design space 175	Exp	ansion	of des	ian s	pace		175
-------------------------------	-----	--------	--------	-------	------	--	-----

Expansion	or design space —— 173
8.1	Methods to affect the radius of curvature —— 175
8.1.1	Decreasing the radius of curvature —— 175
8.1.2	Changing the radius of curvature by modifying the lay-up
	sequence —— 176
8.2	Variation in mechanical properties —— 179
8.3	A-cylinder with an elliptical cross section —— 180
	References —— 182

Index —— 183