

Contents

1	Introduction	1
1.1	Nature of Complex-valued Neural Networks	2
1.1.1	Split Complex-valued Neural Network	2
1.1.2	Fully Complex-valued Neural Networks	4
1.2	Types of Learning	8
1.2.1	Supervised Learning	8
1.2.2	Unsupervised Learning	13
1.3	Mode of Learning	17
1.3.1	Complex-valued Batch Learning Algorithms	17
1.3.2	Complex-valued Sequential Learning Algorithms	19
1.4	Applications	20
1.4.1	Digital Communication: QAM Equalization	21
1.4.2	Array Signal Processing	21
1.4.3	Real-Valued Classification	22
1.4.4	Memories	23
1.4.5	Other Applications	23
	References	24
2	Fully Complex-valued Multi Layer Perceptron Networks	31
2.1	Complex-valued Multi-Layer Perceptron Networks	32
2.1.1	Split Complex-valued Multi-Layer Perceptron	32
2.1.2	Fully Complex-valued Multi-Layer Perceptron	35
2.2	Issues in Fully Complex-valued Multi-Layer Perceptron Networks	40
2.2.1	Split Complex-valued MLP	41
2.2.2	Fully Complex-valued MLP	41
2.3	An Improved Fully Complex-valued Multi-Layer Perceptron (IC-MLP)	42
2.3.1	A New Activation Function: \exp	43
2.3.2	Logarithmic Performance Index	45
2.3.3	Learning Algorithm	46

2.4	Summary	46
	References	47
3	A Fully Complex-valued Radial Basis Function Network and Its Learning Algorithm	49
3.1	Complex-valued RBF Networks	50
3.2	Factors Influencing the Performance of Complex-valued RBF Networks	53
3.3	A Fully Complex-valued RBF Network (FC-RBF)	54
3.3.1	Network Architecture	54
3.3.2	The Activation Function	54
3.4	Learning Algorithm for the FC-RBF Network	56
3.4.1	Network Initialization: K-means Clustering Algorithm	60
3.5	Meta-cognitive Fully Complex-valued Radial Basis Function Network	61
3.5.1	Cognitive Component of Mc-FCRBF: The FC-RBF Network	63
3.5.2	Meta-cognitive Component of Mc-FCRBF: Self-regulatory Learning Mechanism	63
3.6	Summary	69
	References	70
4	Fully Complex-valued Relaxation Networks	73
4.1	Fully Complex-valued Relaxation Networks	74
4.1.1	FCRN Architecture	74
4.1.2	Nonlinear Logarithmic Energy Function	76
4.1.3	A Projection Based Learning Algorithm for FCRN	77
4.2	Summary	82
	References	83
5	Performance Study on Complex-valued Function Approximation Problems	85
5.1	Synthetic Function Approximation Problems	85
5.1.1	Synthetic Complex-valued Function Approximation Problem I (CFAP-I)	86
5.1.2	Synthetic Complex-valued Function Approximation Problem II (CFAP-II)	88
5.2	Real-World Problems	89
5.2.1	Complex Quadrature Amplitude Modulation Channel Equalization Problem	89
5.2.2	Cha and Kassam Channel Model	92
5.2.3	Adaptive Beam-Forming Problem	96
5.3	Summary	105
	References	106

6 Circular Complex-valued Extreme Learning Machine Classifier	109
6.1 Complex-valued Classifiers in the Literature	110
6.1.1 Description of a Real-valued Classification Problem Done in the Complex Domain	110
6.1.2 Multi-Layer Neural Network Based on Multi-Valued Neurons (MLMVN)	111
6.1.3 Phase Encoded Complex-Valued Neural Network (PE-CVNN)	112
6.1.4 Modifications in FC-MLP, FC-RBF and Mc-FCRBF Learning Algorithm to Solve Real-valued Classification Problems	113
6.2 Circular Complex-valued Extreme Learning Machine Classifier . . .	114
6.2.1 Architecture of the Classifier	114
6.2.2 Learning Algorithm of CC-ELM	117
6.2.3 Orthogonal Decision Boundaries in CC-ELM	118
6.2.4 Case (i): Orthogonality of Decision Boundaries in the Output Layer	118
6.2.5 Case (ii): Orthogonality of Decision Boundaries in the Hidden Layer	120
6.3 Summary	122
References	123
7 Performance Study on Real-valued Classification Problems	125
7.1 Descriptions of Real-valued Benchmark Classification Problems	125
7.2 Performance Study	126
7.2.1 Performance Measures	126
7.2.2 Multi-category Real-valued Classification Problems . . .	127
7.2.3 Binary Real-valued Classification Problems	129
7.3 Performance Study Using a Real-world Acoustic Emission Classification Problem	129
7.4 Summary	132
References	132
8 Complex-valued Self-regulatory Resource Allocation Network (CSRAN)	135
8.1 A Brief Review of Existing Complex-valued Sequential Learning Algorithms	137
8.2 Complex-valued Minimal Resource Allocation Network (CMRAN)	138
8.2.1 Drawbacks of the CMRAN Algorithm	143
8.3 Complex-valued Growing and Pruning RBF (CGAP-RBF) Networks	143
8.4 Incremental Fully Complex-valued Extreme Learning Machines (I-ELM)	146

8.5	Complex-valued Self-regulatory Resource Allocation Network Learning Algorithm (CSRAN)	146
8.5.1	Network Architecture	146
8.5.2	Sequential Self-regulating Learning Scheme of CSRAN	148
8.5.3	Guidelines for the Selection of the Self-regulatory Thresholds	152
8.5.4	Illustration of the Self-regulatory Learning Principles Using a Complex-valued Function Approximation Problem	156
8.6	Performance Study: Complex-valued Function Approximation Problems	160
8.6.1	Complex-valued Function Approximation Problem I	160
8.6.2	Complex-valued Function Approximation Problem II	160
8.6.3	QAM Channel Equalization Problem	162
8.6.4	Adaptive Beam Forming Problem	163
8.7	Performance Study: Real-valued Classification Problems	165
8.8	Summary	166
	References	167