Contents

1	A Journey from Molecular Phthalocyanines to Polymeric		
	Materials 1		
1.1	Introduction 1		
1.2	Monophthalocyanines 4		
1.2.1	Tetra-Substituted Monophthalocyanines 6		
1.2.2	Octa-Substituted Monophthalocyanines 7		
1.3	Phthalocyanine-Based Oligomers 9		
1.3.1	Sandwich-Type Phthalocyanine-Based Complexes 9		
1.3.2	μ-Oxo-Linked Phthalocyanine-Based Oligomers 12		
1.3.3	Phthalocyanine-Based Supramolecular Oligomers 13		
1.3.4	Phthalocyanine-Based Covalent-Bonded Oligomers 16		
1.3.4.1	Phthalocyanine-Based Fused Oligomers 16		
1.3.4.2	Phthalocyanine-Based Covalent-Linked Oligomers 19		
1.3.5	Cofacial and Cage-Like Phthalocyanine-Based Compounds 20		
1.4	Phthalocyanine-Based Polymeric Materials 23		
1.4.1	Phthalocyanine-Based Porous Molecular Crystals 23		
1.4.2	Phthalocyanine-Based Coordination Polymers 25		
1.4.3	Phthalocyanine-Based Organic Polymers 29		
1.4.3.1	Amorphous Phthalocyanine-Based Organic Polymers 29		
1.4.3.2	Phthalocyanine-Based COFs 33		
1.5	Porous Polymeric Materials for Functional Applications 36		
1.5.1	Phthalocyanine-Based Polymeric Materials for Chemical Sensors 36		
1.5.2	Phthalocyanine-Based Polymeric Materials for Electrocatalysis 37		
1.5.3	Phthalocyanine-Based Polymeric Materials for Photocatalysts 40		
1.5.4	Phthalocyanine-Based Polymeric Materials for Energy Storage 42		
1.6	Conclusion 43		
	Abbreviations 43		
	References 44		
2	Phthalocyanine-Based Cages 55		
2.1	Introduction 55		
2.1.1	Metal-Organic Cages 55		

vi	Contents	
	2.1.2	Porous Organic Cages 56
	2.2	Phthalocyanine-Based Cages 57
	2.2.1	Pc-Based MOCs 57
	2.2.2	Pc-Based POCs 58
	2.2.3	Subphthalocyanine-Based Cages 64
	2.2.4	Other Phthalocyanine-Based Molecule Cages 65
	2.3	Electrochemical Properties of Pc-Based Cages 73
	2.4	Photophysical Properties of Pc-Based Cage 77
	2.5	Gas-Sensing Properties of Pc-Based Cage 80
	2.6	Host-Guest Properties of Pc-Based Molecular Cages 80
	2.7	Conclusion 82
		Abbreviations 84
		References 84
	3	Phthalocyanine-Based Coordination Polymers 89
	3.1	Introduction 89
	3.2	Synthesis of Pc-Based MOFs 90
	3.2.1	The First Pc-Based Porous Coordination Polymers 91
	3.2.2	MOFs Based on Octahydroxy-Pcs 92
	3.2.3	MOFs Based on Amino-Pcs 98
	3.2.4	MOFs Based on Carboxyl-Substituted Pcs 103
	3.3	Electrochemical Properties of Pc-Based MOFs 106
	3.4	The Nanocomposite of Pcs with Different MOFs Systems 113
	3.5	The Axial Polymer of Pcs 125
	3.6	The Polymers Based on the Co-Assembly of Pcs with Cyclodextrin 128
	3.7	The Nanocomposite of Pcs with MOFs and COFs 130
	3.8	Conclusion 132
		Abbreviations 132
		References 133
	4	Porous Phthalocyanine-Based Organic Polymers 137
	4.1	Introduction 137
	4.2	Pc-Based CMPs 139
	4.2.1	Imine-Linked Pc-Based CMPs 140
	4.2.2	Ethynyl-Linked Pc-Based CMPs 144
	4.2.3	Other Mode-Linked Pc-Based CMPs 146
	4.3	Pc-Based COFs 148
	4.3.1	Octahydroxyphthalocyanine-Derived COFs 150
	4.3.2	Octaaminophthalocyanine-Derived COFs 157
	4.3.3	Octacarboxyphthalocyanine-Derived COFs 164
	4.3.4	Hexadecafluorophthalocyanine-Derived COFs 169
	4.4	Polyphthalocyanines 172
	4.4.1	Amorphous Polyphthalocyanines 173
	4.4.2	Crystalline Polyphthalocyanines 180
	4.5	Conclusion 184

Abbreviations 185 References 188

5	Sensors Based on Phthalocyanine Polymers and Covalent
	Organic Frameworks 193
5.1	Introduction 193
5.2	Basic Parameters for Sensors 194
5.3	Pc-Based NO ₂ /NH ₃ /NO ₂ ⁻ Sensors 195
5.4	Pc-Based ${}^3O_2/{}^1O_2/H_2O_2$ Sensors 199
5.5	Pc-Based Neurotransmitters and Stimulants Sensors 204
5.6	Pc-Based Cancer Biomarker (L-Cysteine) Sensors 206
5.7	Pc-Based Glucose Sensors 208
5.8	Pc-Based Ion Sensors 210
5.9	Pc-Based Organic Compounds Sensors 212
5.10	Pc-Based Temperature/Pressure Sensors 219
5.11	Conclusion 220
	Abbreviations 221
	References 223
6	Application of Phthalocyanine in Electrocatalysis 227
6.1	Introduction 227
6.2	Phthalocyanine for CO ₂ Electroreduction 227
6.3	Phthalocyanine for ORR 255
6.4	Phthalocyanine for OER 259
6.5	Phthalocyanine for HER 260
6.6	Phthalocyanine for Nitrogen Reduction Reaction (NRR) 260
6.7	Phthalocyanine for Electrochemical H ₂ O ₂ Generation 264
6.8	Conclusion and Outlook 265
	Abbreviations 265
	References 266
7	Application of Phthalocyanine in Photocatalysis 269
7.1	Introduction 269
7.2	Phthalocyanine for CO ₂ Photoreduction 270
7.3	Phthalocyanine for H ₂ O ₂ Photosynthesis 285
7.4	Phthalocyanine for Photocatalytic Degradation 287
7.5	Phthalocyanine for Photocatalytic Water Splitting 305
7.6	Conclusion and Outlook 308
	Abbreviations 309
	References 309
8	Applications of Phthalocyanine-Based Polymeric Materials for
	Energy Storage 313
8.1	Introduction 313
8.2	Metal-Ion Battery 313

viii	Contents
------	----------

8.3	Lithium-Ion Battery 314
8.3.1	Cathode Material 314
8.3.2	Anode Material 316
8.3.3	Bipolar Electrode Material 321
8.3.4	Interface-Modified Film 325
8.3.5	Lithium-Sulfur Battery Catalyst 326
8.4	Sodium-Ion Battery 328
8.4.1	Anode Material 328
8.4.2	Bipolar Electrode Material 329
8.4.3	Sodium-Iodide Battery Catalyst 332
8.5	Potassium-Ion Battery 332
8.6	Metal-Air Battery 335
8.7	Li-O ₂ Battery 336
8.8	Li-CO ₂ Battery 338
8.9	Zinc-Air Battery 339
8.10	Supercapacitor 351
8.11	Aqueous Electrolyte System 354
8.12	Nonaqueous Electrolyte System 355
8.13	Gel Electrolyte System 358
8.14	Conclusions and Outlook 360
	Abbreviations 361
	References 362

Index *365*