

Contents

1	Emerging Paradigms in Machine Learning: An Introduction	1
	<i>Sheela Ramanna, Lakhmi C. Jain, Robert J. Howlett</i>	
1.1	Introduction	1
1.2	Chapters of the Book	4
1.3	Concluding Remarks	7
	References and Further Readings	7

Part A: Foundations

2	Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization	11
	<i>Abdulaziz Alkhalid, Igor Chikalov, Shahid Hussain, Mikhail Moshkov</i>	
2.1	Introduction	11
2.2	Basic Notions	12
2.2.1	Decision Tables and Trees	13
2.2.2	Cost Functions	14
2.3	Representation of Sets of α -Decision Trees and Decision Trees	15
2.4	Optimization of α -Decision Trees	18
2.4.1	Proper Subgraphs of Graph $\Delta_\alpha(T)$	18
2.4.2	Procedure of Optimization	18
2.4.3	Possibilities of Sequential Optimization	20
2.4.4	Experimental Results	21
2.5	Relationships between Depth and Number of Misclassifications	24
2.5.1	Computing the Relationships	24
2.5.2	Experimental Results	26
2.6	Conclusions	27
	References	28

3	Optimised Information Abstraction in Granular Min/Max Clustering	31
	<i>Andrzej Bargiela, Witold Pedrycz</i>	
3.1	Introductory Comments	31
3.2	Granular Information in Systems Modeling	35
3.3	Information Density Based Granulation	36
3.4	Granular Representatives of Data	40
3.5	Granular Refinement of Prototypes	44
3.6	Conclusions	47
	References	47
4	Mining Incomplete Data—A Rough Set Approach	49
	<i>Jerzy W. Grzymala-Busse, Zdzislaw S. Hippe</i>	
4.1	Introduction	49
4.2	Blocks of Attribute-Value Pairs	51
4.3	Approximations	54
4.4	Two Algorithms	57
4.5	Global MLEM2	62
4.6	Local MLEM2	63
4.7	Incomplete Data Sets with Numerical Attributes	66
4.8	Experiments	70
4.9	Conclusions	71
	References	72
5	Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation	75
	<i>Estevam R. Hruschka Jr., Maria do Carmo Nicoletti</i>	
5.1	Introduction	75
5.2	Relevant Concepts Related to Bayesian Networks and Bayesian Classifiers	76
5.3	Learning Bayesian Networks and Bayesian Classifiers from Data	81
5.3.1	The Naïve Bayes Classifier	81
5.3.2	The PC Algorithm	82
5.3.3	The K2 Algorithm	84
5.4	Bayesian Classifiers in Feature Subset Selection	85
5.4.1	Considerations about the Feature Subset Selection (FSS) Problem	85
5.4.2	Feature Subset Selection by Bayesian Networks - The K2 χ 2 Method	89
5.5	Bayesian Classifiers in Imputation Processes	94
5.5.1	Considerations about Imputation Processes	94
5.5.2	Commonly Used Imputation Methods	95
5.5.3	Imputation by Bayesian Networks and the K2I χ 2 Method	96

5.6	Post-processing a Bayesian Classifier into a Set of Rules	97
5.6.1	Translating a Bayesian Classifier into a Reduced Set of Rules - The BayesRule Algorithm	98
5.6.2	Using BayesRule - Experiments and Results	103
5.7	Conclusion	110
	References	111
6	Evolving Intelligent Systems: Methods, Algorithms and Applications	117
	<i>Andre Lemos, Walmir Caminhas, Fernando Gomide</i>	
6.1	Introduction	117
6.2	Evolving Fuzzy Systems	120
6.2.1	Evolving Takagi-Sugeno (eTS)	120
6.2.2	Other Evolving Fuzzy Models	124
6.3	Evolving Multivariable Gaussian	127
6.3.1	Gaussian Participatory Evolving Clustering	128
6.3.2	Evolving Multivariable Gaussian Fuzzy Model	134
6.4	Evolving Fuzzy Linear Regression Trees	136
6.4.1	Fuzzy Linear Regression Trees	137
6.4.2	Incremental Learning Algorithm	141
6.5	Experiments	146
6.5.1	Short Term Electricity Load Forecasting	147
6.5.2	Tree Rings	152
6.6	Conclusion	155
	References	156
7	Emerging Trends in Machine Learning: Classification of Stochastically Episodic Events	161
	<i>B. John Oommen, Colin Bellinger</i>	
7.1	Introduction	162
7.1.1	Problem Formulation	162
7.1.2	SE Event Recognition	163
7.1.3	Characteristics of the Domain of Problems	164
7.1.4	Overview of Our Solution	165
7.2	Pattern Recognition: State of the Art	166
7.2.1	Supervised Learning	166
7.2.2	Alternative Learning Paradigms	168
7.2.3	Sampling	169
7.2.4	Dynamic Classification	169
7.3	Modelling the Problem	170
7.3.1	Application Domain	170
7.3.2	Procuring Data: Aspects of Simulation	170
7.3.3	Generated Datasets	173
7.4	PR Solutions	173
7.4.1	Classification Scenarios	174

7.4.2	Classification	175
7.4.3	Classifier Assessment Criteria	176
7.5	Results: Scenario 1	176
7.5.1	General Performance	176
7.5.2	Performance on Short- and Long-Range Detonations	179
7.5.3	Performance as a Function of Distance	180
7.5.4	Expanded Feature-Space	183
7.6	Results: Scenario 2	186
7.6.1	General Performance	186
7.6.2	Performance on Short- and Long-Range Detonations	187
7.6.3	Performance as a Function of Distance	188
7.6.4	Expanded Feature-Space	190
7.7	Discussion	191
7.7.1	Results: S1	191
7.7.2	Results: S2	192
7.8	Conclusions	193
	References	194
8	Learning of Defaults by Agents in a Distributed Multi-Agent System Environment	197
	<i>Henryk Rybinski, Dominik Ryżko, Przemysław Więch</i>	
8.1	Introduction	197
8.2	Related Work	198
8.3	Motivation	200
8.4	Preliminaries	204
8.4.1	Default Logic	204
8.4.2	Distributed Default Logic	205
8.4.3	Inductive Logic Programming	206
8.5	Learning DDL Theory by MAS	208
8.6	Conclusions	212
	References	212
9	Rough Non-deterministic Information Analysis: Foundations and Its Perspective in Machine Learning	215
	<i>Hiroshi Sakai, Hitomi Okuma, Michinori Nakata</i>	
9.1	Introduction	215
9.2	Foundations of Rough Sets in DISs	216
9.2.1	Some Definitions and Aspects in DISs	216
9.2.2	Manipulation Algorithms for Equivalence Relations and Data Dependency	220
9.3	Foundations of Rough Non-deterministic Information Analysis	221
9.3.1	Some Definitions and Aspects in NISs	221
9.3.2	A Basic Chart and Two Modalities	222
9.3.3	Computational Complexity in NISs	223
9.3.4	Possible Equivalence Classes in NISs	223

9.3.5	Some Extended Aspects to NISs	224
9.4	An Aspect of Question-Answering and Decision Making in NISs	229
9.5	Rule Generation in NISs	230
9.5.1	Rule Generation Tasks in a NIS	230
9.5.2	Stability Factor of Rules in the Upper System	232
9.5.3	Current State of a Rule Generator in Prolog	232
9.5.4	An Example of Execution by a Rule Generator	232
9.5.5	An Application to Other Types of Rule Generation	235
9.6	Perspective of RNIA in Machine Learning	238
9.6.1	Handling of Inexact Data	238
9.6.2	Learning a DIS from a NIS by Constraints	239
9.6.3	Table Data and Logical Data in Machine Learning	240
9.7	Concluding Remarks	241
	References	241
10	Introduction to Perception Based Computing	249
	<i>Andrzej Skowron, Piotr Wasilewski</i>	
10.1	Introduction	249
10.2	Motivation for Perception Based Computing	251
10.3	Perception [15, 3]	253
10.4	Interactive Information Systems	255
10.5	Interactive Computing	259
10.6	Action Attributes and Plans	261
10.7	Towards Granule Semantics	265
10.8	Conclusions	270
	References	271
11	Overlapping, Rare Examples and Class Decomposition in Learning Classifiers from Imbalanced Data	277
	<i>Jerzy Stefanowski</i>	
11.1	Introduction	278
11.2	Evaluation Measures for Learning Classifiers from Imbalanced Data	280
11.3	Earlier Studies with Data Factors in Class Imbalance	281
11.4	Generation of New Artificial Data Sets	285
11.5	Experimental Analysis of Influence of Critical Factors on Classifiers	289
11.6	Improving Classifiers by Focused Re-sampling Methods	293
11.6.1	Informed Undersampling	294
11.6.2	Informed Oversampling Methods	295
11.6.3	SPIDER Method	295
11.7	Experiments with Focused Re-sampling Methods	297
11.8	Final Remarks	301
	References	302

12 A Granular Computing Paradigm for Concept Learning	307
<i>Yiyu Yao, Xiaofei Deng</i>	
12.1 Introduction	307
12.2 A Triarchic Theory of Granular Computing	308
12.2.1 Multilevel, Multiview Granular Structures	309
12.2.2 Philosophy: Structured Thinking	312
12.2.3 Methodology: Structured Problem Solving	313
12.2.4 Computation: Structured Information Processing	314
12.3 Granular Computing and Concept Learning	315
12.3.1 Granules and Concepts	315
12.3.2 Granulation and Classification	316
12.3.3 Concept Learning as Searching	318
12.4 A Model for Learning a Classification	319
12.4.1 A Decision Logic Language in an Information Table	320
12.4.2 Conjunctively Definable Concepts	321
12.4.3 Attribute-Oriented Search Strategies in a Space of Partitions Defined by Subsets of Attributes	321
12.4.4 Attribute-Value-Oriented Search Strategies in a Space of Coverings Defined by Families of Sets of Attribute-Value Pairs	323
12.5 Conclusion	324
References	325

Part B: Applications

13 Identifying Calendar-Based Periodic Patterns	329
<i>Jhimli Adhikari, P.R. Rao</i>	
13.1 Introduction	329
13.2 Related Work	332
13.3 Calendar-Based Periodic Patterns	333
13.3.1 Extending Certainty Factor	334
13.3.2 Extending Certainty Factor with Respect to Other Intervals	337
13.4 Mining Calendar-Based Periodic Patterns	339
13.4.1 Improving Mining Calendar-Based Periodic Patterns	339
13.4.2 Data Structure	339
13.4.2 A Modified Algorithm	341
13.5 Experimental Studies	344
13.5.1 Selection of Mininterval and Maxgap	348
13.5.2 Selection of Minsupp	351
13.5.3 Performance Analysis	352
13.6 Conclusions	355
References	356

14	The Mamdani Expert-System with Parametric Families of Fuzzy Constraints in Evaluation of Cancer Patient Survival Length	359
	<i>Elisabeth Rakus-Andersson</i>	
14.1	Introduction	359
14.2	Making Fuzzification of Input and Output Variable Entries by Parametric s-Functions	361
14.3	The Rule Based Processing Part of Surviving Length Model	370
14.4	Defuzzification of the Output Variable	372
14.5	The Survival Length Prognosis for a Selected Patient	372
14.6	Conclusions	376
	References	377
15	Support Vector Machines in Biomedical and Biometrical Applications	379
	<i>Krzysztof A. Cyran, Jolanta Kawulok, Michał Kawulok, Magdalena Stawarz, Marcin Michalak, Monika Pietrowska, Piotr Widłak, Joanna Polańska</i>	
15.1	Introduction	380
15.2	Support Vector Machines Applied in the Classification of Mass Spectra	384
15.2.1	MS Spectra Preprocessing	384
15.2.2	Preparing Spectra to Classification	388
15.2.3	Classification	389
15.3	Support Vector Machines Applied to Human Face Recognition ..	396
15.3.1	Face Recognition Process	397
15.3.2	Evaluation Protocol	398
15.3.3	Selecting SVM Training Set	399
15.3.4	Face Detection	402
15.3.5	Feature Vectors Comparison	407
15.3.6	Multi-method Fusion	411
15.4	Conclusions	413
	References	413
16	Workload Modeling for Multimedia Surveillance Systems	419
	<i>Mukesh Saini, Pradeep K. Atrey, Mohan S. Kankanhalli</i>	
16.1	Introduction	419
16.1.1	Issues in Workload Characterization	421
16.1.2	Contributions Summary	421
16.1.3	Chapter Organization	422
16.2	Surveillance System	422
16.3	Previous Work	423
16.4	Proposed Model	424
16.4.1	Target Flow Graph (TFG)	425
16.4.2	Markov Chain Construction	426
16.4.3	Task Arrival	428

16.4.4	Processing Demand	429
16.4.5	Memory Demand	430
16.5	Performance Evaluation	430
16.5.1	System Response Time	431
16.5.2	Frame Drop Probability	432
16.6	Experiments	433
16.6.1	Implementation	433
16.6.2	Hypothesis Testing: Normal Distributed Processing Time	435
16.6.3	Response Time	435
16.6.4	Frame Drop Probability	437
16.6.5	Implications	437
16.7	Conclusions and Future Work	438
	References	439
17	Rough Set and Artificial Neural Network Approach to Computational Stylistics	<i>Urszula Stańczyk</i> 441
17.1	Introduction	441
17.2	Basics of Computational Stylistics	442
17.2.1	Objectives of Textual Analysis	443
17.2.2	Short Historical Overview	444
17.2.3	Methodologies Employed	445
17.3	Connnectionist and Rule-Based Classification	447
17.3.1	Artificial Neural Networks	447
17.3.2	Rough Set Theory	449
17.4	Experimental Setup	452
17.4.1	Input Datasets	452
17.4.2	Connectionist Classification	455
17.4.3	Rule-Based Classification	455
17.4.4	Analysis of Characteristic Features	458
17.4.5	Performance for Feature Reduction	462
17.5	Conclusions and Future Research	468
	References	469
18	Application of Learning Algorithms to Image Spam Evolution	<i>Shruti Wakade, Kathy J. Liszka, Chien-Chung Chan</i> 471
18.1	Introduction	471
18.2	Related Work	473
18.3	Spam Images Evolution and Datasets	474
18.3.1	Types and Trends of Image Spam	474
18.3.2	The Corpus	477

18.4 Learning from Spam Images	479
18.4.1 Spam Image Representation	479
18.5 Experiments	481
18.5.1 Experiment with J48	482
18.5.2 Experiment with RepTree	482
18.6 Validation by Feature Analysis	486
18.7 Conclusions	492
References	493
Author Index	497