

Contents

List of Symbols	XV
------------------------------	----

Part I Introduction and Survey

1 Introduction	3
1.1 Feedback Stabilization of PDE Systems	4
1.2 Trajectory Planning and Tracking Control for PDE Systems	6
1.3 Objectives of this Book	9
1.4 Outline and Structure	11
References	13

Part II Modeling and Application Examples

2 Model Equations for Non-Convective and Convective Heat Transfer	23
2.1 Non-Convective Heat Transfer	23
2.2 Convective Heat Transfer in Single Phase Flow	26
2.3 Selected Applications and Control Problems	31
2.3.1 Thermal Battery Management	31
2.3.2 Building Climate Control	33
2.3.3 Medical Applications	34
References	34
3 Model Equations for Multi-Agent Networks	37
3.1 Distributed-Parameter Modeling of Networks of Mobile Agents ..	38
3.1.1 Agent Models — Discrete and Continuous Formulations ..	38
3.1.2 Communication Topology by Discretization	44
3.2 Selected Applications and Control Problems	46
3.2.1 Consensus and Stabilization	46
3.2.2 Leader-Enabled Formation Deployment	47
References	48

4 Model Equations for Flexible Structures with Piezoelectric Actuation	51
4.1 Continuum Mechanical Preliminaries	51
4.2 Flexible Plate with Distributed MFC Actuators	58
4.2.1 Preparations	60
4.2.2 Potential Energy, Kinetic Energy, and Virtual Work of Non–Conservative Forces	62
4.2.3 Strong Form of the Equations of Motion	66
4.2.4 Weak or Variational form of the Equations of Motion	69
4.3 Selected Applications and Control Problems	72
4.3.1 Motion Planning and Transient Elastic Shaping of Structures	72
4.3.2 Vibration Suppression and Elastic Motion Tracking	73
References	74
5 Mathematical Problem Formulation	77
5.1 General System Setting	77
5.2 Trajectory Planning and Tracking Control	79
References	80

Part III Trajectory Planning and Feedforward Control

6 Spectral Approach for Time–Invariant Systems with General Spatial Domain	83
6.1 Abstract Formulation and Spectral Analysis	85
6.1.1 Admissible Control and Observation Operators	86
6.1.2 Abstract Boundary Control Systems	87
6.1.3 Bases of Hilbert Spaces, Riesz Bases, and Spectral Operators	91
6.2 Formal Parametrization of Riesz Spectral Systems	98
6.2.1 Finite–Dimensional In–Domain and Boundary Control	99
6.2.2 Infinite–Dimensional In–Domain and Boundary Control	103
6.3 Convergence in Gevrey Classes	109
6.3.1 Operational Convergence	110
6.3.2 Convergence of the Parametrized Fourier Series	115
6.4 Admissible Trajectory Assignment for the Basic Output	118
6.4.1 Finite Time Transitions between Stationary States	118
6.4.2 Finite Time Transitions between Non–stationary States	123
6.5 Application Examples and Simulation Results	127
6.5.1 Heat and Wave Equation on 1–Dimensional Domain	127
6.5.2 Boundary Controlled Linear Diffusion–Reaction Equation on r –Dimensional Riemannian Manifold	133
6.5.3 Boundary Controlled Linear Diffusion–Convection–Reaction Equation on Parallelepiped Domain	143

6.6	Experimental Validation for a Flexible Plate with Distributed MFC Actuators	166
6.6.1	Spectral Properties and Spectral System Representation	166
6.6.2	Formal State and Input Parametrization	170
6.6.3	Convergence Analysis for Special Plate Configurations	171
6.6.4	Semi–Numeric Finite–Dimensional Realization and Numerical Convergence Indicator	173
6.6.5	Experimental Results for Feedforward and Closed–Loop Tracking Control	175
	References	185
7	Formal Integration Approach for Time Varying Systems	189
7.1	Trajectory Planning Problem	190
7.1.1	Transformation into Standard Form	191
7.1.2	Boundary Control Problem	193
7.2	Formal State and Input Parametrization	194
7.2.1	Construction of a Basic Output	195
7.2.2	Uniform Series Convergence in Gevrey Classes	196
7.3	Admissible Trajectory Assignment for the Basic Output	204
7.3.1	Stationary Profiles	204
7.3.2	Admissible Trajectories for the Basic Output	205
7.3.3	Construction of Admissible Trajectories for the Basic Output	206
7.4	Extension to Multiple Input Configurations	210
7.5	Application Examples and Simulation Results	213
7.5.1	Isotropic Diffusion and Reaction	215
7.5.2	Orthotropic Diffusion and Reaction	216
	References	219

Part IV Feedback Stabilization, Observer Design, and Tracking Control

8	Backstepping for Linear Diffusion–Convection–Reaction Systems with Varying Parameters on 1–Dimensional Domains	223
8.1	Stabilization and Tracking Control Problem	224
8.2	Exponentially Stabilizing State–Feedback Control	227
8.2.1	Selection of the Target System	227
8.2.2	Determination of the Kernel–PDE	230
8.2.3	Solution of the Kernel–PDE	232
8.2.4	Backstepping–Based State–Feedback Controller	240
8.2.5	Inverse Backstepping–Transformation and Exponential Stability of the Closed–Loop System	241
8.3	State–Observer with Exponentially Stable Error Dynamics	244
8.3.1	Selection of the Target System	245
8.3.2	Determination of the Kernel–PDE and the Observer Gains	246

8.3.3	Solution of the Kernel–PDE	248
8.3.4	Inverse Backstepping–Transformation and Exponential Stability of the Observer Error Dynamics	251
8.3.5	Separation Principle and Exponential Stability of the Closed–Loop System	253
8.4	Tracking Control Using Backstepping and Differential Flatness	255
8.4.1	Flatness–Based Trajectory Planning	255
8.4.2	Trajectory Assignment in Gevrey Classes Using the Backstepping Transformation	258
8.4.3	Combining Backstepping and Differential Flatness for Exponentially Stabilizing Tracking Control	260
8.5	Application Examples and Simulation Results	261
8.5.1	Trajectory Planning	263
8.5.2	Stabilization and Tracking	263
	References	266
9	Backstepping for Linear Diffusion–Convection–Reaction Systems with Varying Parameters on Parallelepiped Domains	269
9.1	Stabilization and Tracking Control Problem	270
9.1.1	Transformation into Standard Form	272
9.1.2	Boundary Control Problem	273
9.2	Exponentially Stabilizing State–Feedback Control — The Single Input Case	274
9.2.1	Determination of the Kernel–PDE and Selection of the Target System	274
9.2.2	Solution of the Kernel–PDE	279
9.2.3	Backstepping–Based State–Feedback Controller	280
9.2.4	Inverse Backstepping–Transformation and Exponential Stability of the Closed–Loop System	281
9.2.5	Approximate Finite–Dimensional Realization of Backstepping–Based State–Feedback Control	283
9.3	State–Observer with Exponentially Stable Error Dynamics — The Single Output Case	284
9.3.1	Selection of the Target System	286
9.3.2	Determination of the Kernel–PDE and the Observer Gains	287
9.3.3	Solution of the Kernel–PDE	289
9.3.4	Inverse Backstepping–Transformation and Exponential Stability of the Observer Error Dynamics	290
9.3.5	Separation Principle and Exponential Stability of the Closed–Loop System	291
9.3.6	Approximate Realization of the State–Observer by means of Spatial Output Interpolation	294
9.4	Tracking Control — The Single Input and Output Case	296

9.5	Exponentially Stabilizing State–Feedback Control — The Multiple Input Case	298
9.5.1	Multi–linear Backstepping–Transformation	299
9.5.2	Determination and Solution of the Kernel–PDEs	300
9.5.3	Backstepping–Based State–Feedback Controller	303
9.5.4	Inverse Multi–linear Backstepping–Transformation and Exponential Stability of the Closed–Loop System	305
9.5.5	Approximate Finite–Dimensional Realization of Backstepping–Based State–Feedback Control	306
9.6	State–Observer with Exponentially Stable Error Dynamics — The Multiple Output Case	307
9.6.1	Multi–linear Backstepping–Transformation	309
9.6.2	Determination of the Kernel–PDEs and the Observer Gains	310
9.6.3	Solution of the Kernel–PDEs	319
9.6.4	Inverse Backstepping–Transformation and Exponential Stability of the Observer Error Dynamics	319
9.6.5	Separation Principle and Exponential Stability of the Closed–Loop System	320
9.6.6	Approximate Realization of the State–Observer by means of Spatial Output Interpolation	327
9.7	Tracking Control — The Multiple Input and Output Case	328
9.8	Application Examples and Simulation Results	329
9.8.1	Exponential Feedback Stabilization and State Estimation for an Unstable Time Varying Diffusion–Reaction System	329
9.8.2	Synchronization of Large Scale Multi–Agent Network	334
	References	346

Part V Appendix

A	Notation	349
A.1	Einstein Summation Convention	349
A.2	Multi–Index Notation	350
	References	350
B	Mathematical Background	351
B.1	Complex Analysis	351
B.2	Entire Functions	352
B.2.1	Fundamental Notions	352
B.2.2	Weierstrass Canonical Products and the Hadamard Theorem	354
B.3	Functional Analysis	356
B.3.1	Fundamental Notions and Definitions	356
B.3.2	Duality and Pivot Spaces	357

B.3.3 The Spaces X_1 and X_{-1}	358
B.3.4 Sesquilinear Forms and the Lax–Milgram Theorem	359
B.4 Auxiliary Theorems and Lemmas	360
References	360
Index	363