

ERIES

ad, multidisciplinary, and dynamic
iology, chemistry, and medicine. The
be comprehensive, covering a broad
medical physics. Its goal is to provide
ks, monographs and reference books

ver, Rensselaer Polytechnic Institute,
York, USA

unger, Department of Physics,
University, Princeton, New Jersey, USA

erzfeld, Department of Chemistry,
University, Waltham, Massachusetts, USA

iot, Institute de Biologie
Chimique, Fondation Edmond
child, Paris, France

zthelyi, Institute of Biophysics, Hungarian
of Sciences, Szeged, Hungary

Knox, Department of Physics
nomy, University of Rochester, Rochester,
, USA

ewis, Department of Applied Physics,
niversity, Jerusalem, Israel

Lindsay, Department of Physics
nomy, Arizona State University,
rizona, USA

uzerall, Rockefeller University,
, New York, USA

Mielczarek, Department of Physics
nomy, George Mason University, Fairfax,
USA

oore, Department of Chemistry,
iversity, New Haven, Connecticut, USA

Parsegian, Physical Science Laboratory,
nstitutes of Health, Bethesda,
, USA

owers, NCDMF: Electrical Engineering,
University, Logan, Utah, USA

ohofsky, Department of Physics,
niversity, West Lafayette, Indiana, USA

ubin, Department of Biophysics, Moscow
ersity, Moscow, Russia

ebert, National Renewable Energy
y, Golden, Colorado, USA

mas, Department of Biochemistry,
of Minnesota Medical School,
lis, Minnesota, USA

Williamson, Department of Physics,
University, New York, New York, USA

Nikolai L. Vekshin

Photonics of Biopolymers

With 94 Figures

Springer

C 13 a / 133

Dr. Nikolai L. Vekshin
Russian Academy of Science
Institute of Cell Biophysics
142290 Moscow Region, Pushchino
Russia

2005 159

Cataloging-in-Publication data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Vekshin, Nikolai L.:
Photonics of biopolymers / Nikolai L. Vekshin
Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Tokyo: Springer, 2002
(Biological and medical physics series)
(Physics and astronomy online library)
ISBN 3-540-43817-3

An earlier edition of this book was published in 1999 by Moscow University Press

ISSN 1618-7210

ISBN 3-540-43817-3 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science + Business Media GmbH

<http://www.springer.de>

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Digital data supplied by author
Cover concept: eStudio Calamar Steinen using a background picture from The Protein Databank (1 Kzu). Courtesy of Dr. Antoine M. van Oijen, Department of Molecular Physics, Huygens Laboratory, Leiden University, The Netherlands. Reprinted with permission from Science 285 (1999) 400-402 („Unraveling the Electronic Structure of Individual Photosynthetic Pigment-Protein Complexes“, by A.M. van Oijen et al.) Copyright 1999, American Association for the Advancement of Science.
Cover production: *design & production* GmbH, Heidelberg

Printed on acid-free paper SPIN 10852124 57/3020/Rw 5 4 3 2 1 0

Contents

1	Introduction to Photonics	1
1.1	Light Absorption	3
1.2	Vibrational Relaxation and Internal Conversion	3
1.3	Fluorescence	3
1.4	Intersystem Crossing and Phosphorescence	4
1.5	Energy Transfer	5
1.6	Excimer and Exciplex Formation	5
1.7	Photochemical Reaction and Electron Transfer	5
1.8	Photoinduced Conformational Changes	5
2	Light Absorption in Ordered Structures	7
2.1	Probability of Absorption	7
2.2	Lambert–Beer Law	9
2.3	Biological Chromophores	10
2.4	Absorbance in Scattering Media	11
2.5	Hypochromism	11
2.6	Molecular Interactions	12
2.7	Sieve Effect	13
2.8	Light-Scattering Model	14
2.9	Light-Dispersion Model	15
2.10	Stacking Model	15
2.11	Conclusion	16
3	Screening Hypochromism	18
3.1	Screening model	19
3.2	Nucleotides, Oligonucleotides and DNA	23
3.3	Tyrosine and Tryptophan in Aggregates	27
3.4	Tyrosine and Tryptophan in Proteins	28
3.5	Hemoglobin in Erythrocytes	30
3.6	Chloroplasts and Visual Rods	31
3.7	Clusters of Aromatic Hydrocarbons	32
3.8	Conclusion	35
4	Photometric Estimation of Protein Content in Biological Suspensions	36
4.1	Colorimetry and Others Methods	36
4.2	Combined UV-Spectrophotometric Method	36

VIII Contents

4.3 Comparison of the Methods	38
4.4 Conclusion	40
5 Screening and Reabsorption of Light	41
5.1 Inner Filter Effect	41
5.2 Microscreening and Microreabsorption	42
5.3 Erythrocytes and Other Cells	44
5.4 Volume Reabsorption of Donor Luminescence	45
5.5 Trypaflavine Activates Rhodamine Fluorescence	47
5.6 Conclusion	50
6 Multipass Cuvettes for Luminescence Spectroscopy	51
6.1 Mirror and Total Internal Reflection Cuvettes	51
6.2 Multipass Cuvettes in Steady-State Measurements	53
6.3 Multipass Cuvettes in Lifetime Measurements	54
6.4 Other Applications	55
6.5 Conclusion	55
7 Division of Tyrosine and Tryptophan Fluorescence Components	56
7.1 Generally Accepted Approaches	56
7.2 Synchronous Scanning Method	58
7.3 Synchronous Spectra of Tryptophan and Tyrosine	58
7.4 Synchronous Spectra of Different Tryptophan Residues	60
7.5 Conclusion	61
8 Spectral Heterogeneity of Tryptophan Emission	62
8.1 Variation of Fluorescence Polarization along Tryptophan Emission Spectrum	62
8.2 Fluorescence Lifetime Variations	68
8.3 Photoinduced Conformational Mobility of Proteins	70
8.4. Phosphorescence of Proteins	72
8.5 Conclusion	73
9 Discrete Emission States in Photoexcited Tryptophan Complexes	74
9.1 Time-Resolved Spectroscopy of Tryptophan Fluorescence	75
9.2 TRP and NATA in Water	78
9.3 TRP, NATA and Indole in Ethanol	80
9.4 TRP and NATA in Glycerol	81
9.5 Dipeptides	83
9.6 Exciplexes in Proteins	84
9.7 Conclusion	88
10 Mechanisms of Exciplex Formation	90
10.1 Generally Accepted Models	90
10.2 Fractional Energy Transfer in Exciplexes	92
10.3 Exciplex of Aromatic Hydrocarbons	94

.....	38	10.4 Excimers	96
.....	40	10.5 Pyrene-Indole Exciplex	98
.....	41	10.6 Conclusion	100
.....	41
.....	42	11 Mechanisms of Energy Transfer	101
nce	44	11.1 Inductive-Resonance Model	102
cence	45	11.2 Energy Transfer in Molecular Structures	105
opy	47	11.3 Hot Migration	108
es	50	11.4 Conclusion	110
lements	51
nts	53	12 Energy Transfer in Nucleic Acids	111
.....	54	12.1 Migration Between Nucleotides	111
.....	55	12.2 Migration Along DNA	113
ce Components	56	12.3 Quantum Yield of Energy Transfer to Dyes	113
.....	56	12.4 Polyadenylic Acid Labeled by Ethenoadenine	115
rosine	58	12.5 DNA with Intercalated Dyes	115
an Residues	60	12.6 Fluorescent Probes and Labels on DNA	119
.....	61	12.7 Conclusion	121
.....	62
g Tryptophan Emission	62	13 Energy Transfer in Native Proteins	122
.....	62	13.1 Tyrosine-Tryptophan Pair	122
roteins	68	13.2 Migration between Tryptophan Residues	126
.....	70	13.3 Tryptophan-NADH Pair in Alcohol Dehydrogenase	127
.....	72	13.4 Tryptophan-Heme Pair in Myoglobin	132
.....	73	13.5 Tryptophan-Pyrene Pair	134
phan Complexes	74	13.6 Quenching of Tryptophan Emission by Dyes	137
Fluorescence	75	13.7 Conclusion	141
.....	78
.....	80	14 Energy Transfer in Biomembranes	142
.....	81	14.1 Quenching of Tryptophan Fluorescence in Sarcoplasmic Reticulum by	
.....	83	Probes	143
.....	84	14.2 Quenching of Tryptophan Fluorescence by ANS	145
.....	88	14.3 Quenching of Tryptophan Fluorescence by Pyrene	146
.....	90	14.4 Tryptophan-NADH Pair in Mitochondria	147
.....	90	14.5 Photosynthetic Reaction Centers	149
.....	92	14.6 Conclusion	150
.....	94
.....	151	15 Fluorescence Probes	151
.....	151	15.1 Widely Used Probes	151
.....	155	15.2 Estimation of Sizes of Chaperones and their Complexes Using ANS	155
.....	158	15.3 Fluorescent Studies of $\text{Na}^+ \text{K}^+$ -ATPase	158
.....	159	15.4 Anthracene with Dimethylaminochalcone in Membranes	159
.....	161	15.5 Diffusion of Probes	161
.....	162	15.6 Fluorescence Pharmacology <i>in vitro</i>	162
.....	163	15.7 Conclusion	163

X Contents

16 Pyrene Monomers and Excimers in Membranes	165
16.1 Viscosity Measurements	165
16.2 Location and Diffusion of Pyrene	166
16.3 Detection of Oxygen by Pyrene Emission	168
16.4 Vibronic Peaks as Indicators of Membrane Polarity	170
16.5 Conclusion	171
17 Photomodulation of Enzyme Activity	172
17.1 Photoactivation of Enzymes	172
17.2 Photodesorption	173
17.3 Photochemical Processes in Alcohol Dehydrogenase	174
17.4 Photolysis of Flavin in NADH Dehydrogenase	179
17.5 Conclusion	183
18 Photoactivation of Animal Membranes and their Chromophores	184
18.1 Photoinduced Membranes Activity	184
18.2 Oxygen Uptake in Mitochondria under Photoexcitation	185
18.3 Oxidation of NADH by Triplet Flavin and Singlet Oxygen	187
18.4 Conclusion	192
19 Light-Dependent Phosphorylation in Mitochondria	193
19.1 ATP Synthesis during Illumination	193
19.2 Thermal Coupling between ATP Synthesis and Electron Transfer	197
19.3 Conclusion	199
References	200
Index	228