Contents

Preface ---- V

1	Physical backgrounds for some nonlinear evolution equations —— 1
1.1	The wave equation under weak nonlinear action and KdV equation — 1
1.2	Zakharov equation and the solitons in plasma —— 9
1.3	Landau-Lifshitz equation and the magnetized motion —— 18
1.4	Boussinesq equation, Toda Lattice and Born-Infeld equation — 21
1.5	2D K-P equation —— 25
2	The properties of the solutions for some nonlinear evolution
	equations —— 29
2.1	The smooth solution for the initial-boundary value problem of nonlinear Schrödinger equation —— 30
2.2	The existence of the weak solution for the initial-boundary value
	problems of generalized Landau-Lifshitz equations —— 34
2.2.1	The basic estimates of the linear parabolic equations —— 34
2.2.2	The existence of the spin equations —— 35
2.2.3	The existence of the solution to the initial-boundary value problem of the generalized Landau–Lifshitz equations —— 38
2 2	The large time behavior for generalized KdV equations —— 42
2.3	The decay estimates for the weak solution of Navier–Stokes
2.4	equations —— 59
2.5	The "blowing up" phenomenon for the Cauchy problem of nonlinear
	Schrödinger equations —— 70
2.6	The "blow up" problem for the solutions of some semilinear and hyperbolic equations —— 76
2.7	The smoothness of the weak solutions for Benjamin-Ono
	equations —— 90
3	Some results from the study of some nonlinear evolution equations —— 103
3.1	Nonlinear wave equations and nonlinear Schrödinger equations —— 103
3.2	KdV equations —— 119
3.3	Landau–Lifshitz equations —— 129
4	Similarity solution and the Painlevé property for some nonlinear evolution equations —— 139
4.1	Classical infinitesimal transformations —— 139
4.2	Structure of Lie algebra for infinitesimal operator —— 153
4.3	Nonclassical infinitesimal transformations —— 155

4.4	A direct method for solving similarity solutions —— 160
4.5	The Painlevé properties for some PDE —— 170
5	Infinite-dimensional dynamical systems 179
5.1	Infinite-dimensional dynamical systems —— 180
5.2	Some problems for infinite-dimensional dynamical systems —— 184
5.3	Global attractor and its Hausdorff, fractal dimensions —— 193
5.4	Global attractor and the bounds of Hausdorff dimensions for weak damped KdV equation —— 203
5.4.1	Uniform a priori estimation with respect to t — 203
5.5	Global attractor and the bounds of Hausdorff dimensions for weak damped nonlinear Schrödinger equation —— 214
5.5.1	Uniform a priori estimation with respect to t —— 214
5.5.2	Transforming to Cauchy problem of the operator —— 219
5.5.3	The existence of bounded absorbing set of H^1 modular —— 221
5.5.4	The existence of bounded absorbing set of H^2 modular —— 222
5.5.5	Nonlinear semigroup and long-time behavior —— 226
5.5.6	The dimension of invariant set —— 229
5.6	Global attractor and the bounds of Hausdorff, fractal dimensions for damped nonlinear wave equation —— 235
5.6.1	Linear wave equation —— 235
5.6.2	Nonlinear wave equation —— 240
5.6.3	The maximal attractor —— 247
5.6.4	Dimension of the maximal attractor —— 250
5.6.5	Application —— 257
5.6.6	Nonautonomous system —— 262
5.7	Inertial manifold for one class of nonlinear evolution equations —— 265
5.8	Approximate inertial manifold —— 284
5.9	Nonlinear Galerkin method —— 293
5.10	Inertial set —— 319
A	Appendix —— 341
A.1	Basic notation and function space —— 341
A.2	Sobolev embedding theorem and interpolation formula —— 343
A.3	Fixed-point theorem —— 346
Piblio	

Bibliography —— 349

Index —— 361