Contents

1	Intro	duction	1
	1.1	Edible	Oils
		1.1.1	Introduction
		1.1.2	Constituents of Edible Oils
		1.1.3	Methods of Analysis of Main Edible
			Oil Constituents
		1.1.4	Detection of Adulteration
	1.2	Olive	Oil
		1.2.1	Legal Classification of Olive Oil
		1.2.2	Sensory Assessment of Virgin Olive Oils 10
		1.2.3	Genetic Varieties
		1.2.4	Geographical Origin
		1.2.5	Oxidation Compounds from Olive Oil
	1.3	Analy	tical Techniques
		1.3.1	CEC
		1.3.2	LC
		1.3.3	Chromatographic Parameters
		1.3.4	IR Spectroscopy
		1.3.5	MS 26
		1.3.6	Electronic Olfactometry
		1.3.7	Data Statistical Treatment
	Refe	rences .	
2	Obje	ectives a	nd Work Plan45
3	Mate	erials ar	nd Methods
	3.1	Reage	nts and Materials
		3.1.1	Standards
		3.1.2	Solvents
		3.1.3	Monomers, Crosslinkers and Initiators 48
		3.1.4	Other Reagents

xii Contents

	3.2	Samples	
	3.3	Sample Preparation	
		3.3.1 Ts	9
		3.3.2 Sterols and Alcohols	9
		3.3.3 Amino Acids	0
		3.3.4 Oil Treatment for Direct Infusion MS	1
		3.3.5 Phenolic Compounds 5	l
		3.3.6 Elimination of EVOO Phenolic Compounds 57	2
		3.3.7 Fatty Acids	2
		3.3.8 OFAs	2
		3.3.9 Other Analytical Parameters 55	3
	3.4	Column Treatment	3
		3.4.1 Column Conditioning	3
		3.4.2 Monolithic Column Preparation	4
	3.5	Instrumentation and Working Conditions	4
		3.5.1 CEC	4
		3.5.2 Nano-LC 5.	5
		3.5.3 UPLC-MS 5	5
		3.5.4 FTIR Spectroscopy 5	6
		3.5.5 Direct Infusion MS	7
		3.5.6 GC 5	8
		3.5.7 HPLC-UV-Vis and HPLC-MS 5	8
		3.5.8 Electronic Nose 6	0
		3.5.9 OSI 6	2
	3.6	Sensory Analysis 6	3
	3.7	Treatment of Variables for Statistical Analysis 6	3
	Refe	rences	4
4	Deve	lopment of Methods for the Determination of Ts, T3s	
	and	Sterols in Vegetable Oils 6	7
	4.1	Determination of Ts by CEC Using Methacrylate	
		Monolithic Columns	7
		4.1.1 Influence of Pore Size 6	7
		4.1.2 Influence of Mobile Phase Composition 6	9
		4.1.3 Quantitation Studies and Application to	
		Real Samples 7	C
	4.2	Determination of Ts and T ₃ s by Nano-LC Using	
		a Silica Monolithic Column	4
		4.2.1 Optimization of the Separation Conditions	14
		4.2.2 Quantitation Studies and Application	
		to Real Samples	16
	4.3	Methacrylate Monolithic Columns for Nano-LC	
		_	7
			79

Contents xiii

		4.3.2	Quantitation Studies and Application	
			to Real Samples	80
	4.4		mination of Sterols by CEC Using Methacrylate	
		Monol	lithic Columns	83
		4.4.1	Optimization of the Separation Conditions	83
		4.4.2	Quantitation Studies and Application	
			to Real Samples	89
	4.5		mination of Sterols by UPLC-MS	91
		4.5.1	Optimization of the Separation Conditions	92
		4.5.2	Quantitation Studies and Application	
			to Real Samples	94
	Refei	rences .		101
5			t of Methods for the Classification of Vegetable Oils	.0.
			o Their Botanical Origin	105
	5.1		fication Using FTIR Spectroscopy Data	105
		5.1.1	Data Treatment and Construction of Data Matrices	105
			Construction of LDA Models	107
	5.2	5.1.3		109
	3.2		fication Using Sterol Profiles Established rect Infusion MS	111
		ווע פט 5.2.1	Selection and Normalization of the Variables	111 112
		5.2.1		113
	5.3		fication Using Alcoholic Fraction Profiles Established	113
	5.5		PLC-MS	117
		5.3.1	Optimization of the Esterification Procedure	117
		5.3.2	•	119
		5.3.3		120
	5.4		fication Using Amino Acid Profiles Established	120
			rect Infusion MS	124
		5.4.1	MS Amino Acid Profiles	124
		5.4.2	Construction of Data Matrices and LDA Models	124
	5.5	Classi	fication Using Amino Acid Profiles Established	
			PLC-UV-Vis	130
		5.5.1	HPLC-UV-Vis Amino Acid Profiles	131
		5.5.2	Construction of Data Matrices and LDA Models	132
	Refe	rences .		135
6	Deve	lopmen	at of Methods for Olive Oil Quality Evaluation	137
	6.1	Classification of Olive Oils According to Their Quality Grade		
			Fatty Acid Profiles Obtained by Direct Infusion MS	137
		6.1.1	Ms Fatty Acid Profiles	137
		6.1.2	Construction of Data Matrices and LDA Models	139
		6.1.3	Evaluation of Binary Mixtures of Olive Oils	
			of Different Quality Grade	140

	6.2	Electronic Nose Applied to Defect Detection and Quantitation	
		in Olive Oils and Comparison with Sensory Panel Data	142
		6.2.1 Establishment of the Sensory Threshold	
		by Trained Panelists	142
		6.2.2 Classification of Oils Containing VOO Defects	
		According to Their Sensory Threshold as Established	
		by a Sensory Panel	146
		6.2.3 Prediction of Defect Percentage in Sunflower Oil by	
		Electronic Nose Followed by MLR Data Analysis	148
	Refe	rences	150
7	Deve	elopment of Methods for the Classification of EVOOs	
•		ording to Their Genetic Variety	151
٥	7.1	Classification Using FTIR Spectroscopy Data	151
	/ - 1	7.1.1 Data Treatment and Construction of Data Matrices	151
		7.1.2 Construction of LDA Models	153
	7.2	Classification Using Fatty Acid and Phenolic Compound	133
	1.4	Profiles Established by Direct Infusion MS	156
		7.2.1 Construction of Data Matrices and LDA Models	157
	7.2	Classification Using Sterol Profiles Establishedby HPLC-MS.	161
	7.3		162
		7.3.1 Optimization of the Separation Conditions7.3.2 Construction of Data Matrices and LDA Models	163
	7.4		166
	7.4	Classification Using Sterol Profiles Established by UPLC-MS.	168
		7.4.1 Construction of Data Matrices and LDA Models	
	ъс	7.4.2 Determination of Sterols in Real Samples	173 173
	Refe	rences	1/3
8		elopment of Methods for the Classification of EVOOs	
		ording to Their Geographical Origin	175
	8.1	Classification Using Phenolic Compound Profiles Obtained	
		by CEC	175
		8.1.1 Construction of the Monolithic Columns	
		and Optimization of the Separation Conditions	175
		8.1.2 Characterization of the Phenolic Compound Profiles	177
		8.1.3 Construction of Data Matrices and LDA Models	179
	Refe	rences`	181
9	Deve	elopment of Methods for the Evaluation of Olive	
	Oil	Oxidation	183
	9.1	Study of Chemical Changes Produced in VOOs with	
		Different Phenolic Content During an Accelerated	
		Ageing Treatment	183
		9.1.1 Evaluation of the Phenolic Content	184
		9.1.2 Phenolic Compound Transformation in EV1 Samples	

Contents xv

		During the Accelerated Ageing Treatment	187	
	9.2	Evaluation of the Oxidative Status of VOOs with Different	107	
	7.2	Phenolic Content by Direct Infusion MS	192	
		9.2.1 MS Analysis and Selection of the Variables	193	
		9.2.2 Construction of Data Matrices and LDA Models	194	
	9.3	MOS Sensors for Monitoring of Oxidative Status Evolution	127	
	7.5	and Sensory Analysis of VOOs with Different		
		Phenolic Contents	198	
		9.3.1 Construction of Data Matrices and LDA Models	199	
		9.3.2 Sensory Analysis and Evaluation	1,7,7	
		of the Constructed LDA Model	200	
	9.4	Prediction of OFA Concentration in VOOs	200	
	Using MOS Sensors and MLR		203	
		9.4.1 OFA Content	203	
		9.4.2 Construction of Data Matrices and MLR Models	205	
	9.5	Prediction of OFA Concentration in VOOs Using FTIR		
		and MLR	208	
		9.5.1 Description of FTIR Spectra and Construction		
		of Data Matrices and MLR Models	208	
	Refer	ences	211	
10	General Conclusions			
	10.1	Development of Methods for the Determination of Ts		
		and T ₃ s in Vegetable Oils	213	
	10.2	Development of Methods for the Determination		
		of Sterols in Vegetable Oils	214	
	10.3	Development of Methods for the Classification		
		of Vegetable Oils According to Their Botanical Origin	215	
	10.4	Development of Methods for Olive Oil Quality Evaluation	215	
	10.5	Development of Methods for the Classification		
		of EVOOs According to Their Genetic Variety	216	
	10.6	Development of Methods for the Classification		
		of EVOOs According to Their Geographical Origin	217	
	10.7	Development of Methods for the Evaluation		
		of Olive Oil Oxidation	217	