Mogens Blanke · Michel Kinnaert Jan Lunze · Marcel Staroswiecki

Diagnosis and Fault-Tolerant Control

With contributions by Jochen Schröder

With 228 Figures

Contents

1.	Inti	oduction to diagnosis and fault-tolerant control	1			
	1.1	Technological processes subject to faults	1			
	1.2	Faults and fault tolerance	3			
		1.2.1 Faults	3			
		1.2.2 Requirements and properties of systems subject to faults	8			
	1.3	Elements of fault-tolerant control	10			
		1.3.1 Fault-tolerant control architecture	10			
		1.3.2 Main ideas of fault diagnosis	13			
		1.3.3 Main ideas of controller re-design	18			
		1.3.4 A practical view on fault-tolerant control	22			
	1.4	Survey of the book	23			
		Bibliographical notes	26			
2.	Exa	Examples				
	2.1	Two-tank system	27			
	2.2	Ship steering and track control	31			
3.	Mo	Models of dynamical systems				
	3.1	Fundamental notions	39			
	3.2	Modelling the system architecture	43			
	3.3	System behaviour – basic modelling features	46			
	3.4	Continuous-variable systems	47			
	3.5	System structure	51			
	3.6	Discrete-event systems	53			
	3.7	Hybrid systems	56			
	3.8	Links between the different models	57			
		Bibliographical notes	60			
4.	Ana	Analysis based on components and architecture				
	4.1	Introduction	61			
	4.2	Generic component models	63			
		4.2.1 Services	63			
		4.2.2 Introduction of the generic component model	65			
		4.2.3 Simple components	66			

		4.2.4	Complex components	. 69
		4.2.5	Building systems from components	. 72
	4.3	Faults	in components and their consequences	. 75
	4.4	Fault	propagation analysis	. 77
	4.5		representation of component architecture	
	4.6	Fault	propagation in closed loops	
		4.6.1	Cutting the closed fault propagation loop	
		4.6.2	Assessment of the severity of the fault effects	
		4.6.3	Decision about fault handling	
	4.7		tolerance analysis	
		4.7.1	Relation between services and objectives	
		4.7.2	Management of service versions	
		4.7.3	Management of operation modes	
		Biblio	graphical notes	. 98
5.	Str	uctura	l analysis	. 99
	5.1		luction	
	5.2		gural model	
		5.2.1	Structure as a bi-partite graph	
		5.2.2	Subsystems	
		5.2.3	Structural properties	
		5.2.4	Known and unknown variables	
	5.3	Match	ning on a bi-partite graph	. 111
		5.3.1	Definitions	. 112
		5.3.2	Oriented graph associated with a matching	. 116
		5.3.3	Alternated chains and reachability	. 118
		5.3.4	Causal interpretation	. 119
		5.3.5	Matching algorithm	. 127
	5.4	System	m canonical decomposition	. 130
		5.4.1	Definitions	. 130
		5.4.2	Canonical subsystems	. 131
		5.4.3	Interpretation of the canonical decomposition	. 133
	5.5	Obser	vability	
		5.5.1	Observability and computability	
		5.5.2	Structural observability conditions	
		5.5.3	Observability of linear systems	
		5.5.4	Graph-based interpretation and formal computation .	
	5.6		orability	. 144
		5.6.1	Analytical redundancy-based fault detection and iso-	
			lation	
		5.6.2	Structurally monitorable subsystems	
		5.6.3	Design of analytic redundancy relations	
		5.6.4	Parity space and observer-based approaches	
		5.6.5	Design of robust and structured residuals	
		566	Fault propagation and alarm filtering	161

	5.7	Contr	ollability	. 162
	5.8	Struct	tural analysis of fault tolerance	. 164
	,	5.8.1	Faults and the system structure	
		5.8.2	Knowledge about faults	. 166
		5.8.3	Fault tolerance with respect to non-structural faults .	. 167
		5.8.4	Fault tolerance with respect to structural faults	. 167
	5.9	Concl	usions	. 170
		Biblio	ographical notes	. 171
6.	Fau	lt dias	gnosis of continuous-variable systems	. 173
	6.1		duction	
	6.2		ministic model – parity space approach	
		6.2.1		
		6.2.2	Solution by the parity space approach	
		6.2.3	Fault isolation	
		6.2.4	Fault estimation	. 189
	6.3	Deter	ministic model – optimisation-based approach	. 192
		6.3.1	Problem statement	. 192
		6.3.2	Solution using the standard setup formulation	. 196
		6.3.3	Residual generation	. 199
	6.4	Stoch	astic model – change detection algorithms	. 205
		6.4.1	Introduction	. 205
		6.4.2	Sequential change detection: the scalar case	. 205
		6.4.3	Sequential change detection: the vector case	. 221
	6.5	Stoch	astic model – Kalman filter approach	. 232
		6.5.1	Model	
		6.5.2	Fault detection	
		6.5.3	Fault estimation	
		6.5.4	Fault isolation	
		Biblic	ographical notes	. 255
7.	Fau	lt-tole	erant control of continuous-variable systems	. 259
	7.1		-tolerant control architecture	
	7.2	The fa	ault-tolerant control problem	. 262
		7.2.1	Standard control problem	
		7.2.2	Impacts of faults on the control problem	. 264
		7.2.3	Passive versus active fault-tolerant control	. 266
		7.2.4	Available knowledge	. 267
		7.2.5	Active fault-tolerant control strategies	
		7.2.6	Supervision	
	7.3	An or	ptimal control approach to fault-tolerant control with	
			tor faults	. 270
		7.3.1	Control problem	
		7.3.2	Control of the nominal plant	. 271
		7.3.3	Fault tolerance with respect to actuator faults	. 272

		7.3.4	Fault accommodation	274
		7.3.5	Control reconfiguration	277
		7.3.6	Example	278
		7.3.7	Extension to a more general problem setting	279
	7.4	Mode	l-matching approach to fault-tolerant control	281
		7.4.1	Reconfiguration problem	281
	٠,	7.4.2	Fault-tolerant control based on model-matching	282
		7.4.3	Model-matching control for sensor faults	284
		7.4.4	Model-matching control for actuator faults	285
	7.5	Contr	ol reconfiguration for actuator or sensor faults	286
		7.5.1	The idea of virtual sensors and virtual actuators	. 286
		7.5.2	Reconfiguration problem	289
		7.5.3	Virtual sensor	290
		7.5.4	Virtual actuator	
		7.5.5	Duality between virtual sensors and virtual actuators.	. 299
	7.6	Contr	coller re-design in the general fault case	
		7.6.1	System description	303
		7.6.2	Youla-Kucera parameterisation in coprime factorisa-	
			tion form	
		7.6.3	Parametrisation in the state-space form	307
		7.6.4	Simultaneous design of the controller and the residual	
			generator	
		Biblic	ographical notes	. 312
8.	D:a	an oaia	and reconfigurable control of discrete-event sys	
٥.		-	and reconfigurable control of discrete-event sys	
	8.1		ration	-
	8.2		ls of discrete-event systems	
	0.2	8.2.1		
	•	8.2.2	Non-deterministic automata and Petri nets	
		8.2.3	Stochastic automata	
	8.3		observation of stochastic automata	
	0.0		Observation problem	
		8.3.2	Consistent input-output pairs	
		8.3.3	Solution to the state observation problem	
		8.3.4	Recursive form of the solution	
		8.3.5	Discussion of the results	
		8.3.6	Observation algorithm	
		8.3.7	State observation of non-deterministic automata	
		8.3.8	Observability of stochastic automata	
		8.3.9	Distinguishing inputs	
	8.4		nosis of stochastic automata	
		8.4.1	Principle of consistency-based diagnosis	
		8.4.2	Model of the faulty automaton	
		0.4.2	Model of the faulty automaton	. აიი
		8.4.3	Consistency-based diagnosis of stochastic automata	

		8.4.4	Diagnostic algorithm	365
		8.4.5	Diagnosability of stochastic automata	369
	8.5	Contro	ol reconfiguration for stochastic automata 3	373
		8.5.1	Sensor and actuator fault isolation	
		8.5.2	Automatic substitution of faulty sensors 3	
		8.5.3	Automatic reconfiguration of diagnosis	
		Bibliog	graphical notes 3	
9.	Dia	gnosis	and reconfiguration of quantised systems 3	385
	9.1		uction to quantised systems 3	
		9.1.1	Supervision of hybrid systems	
		9.1.2	The quantised system approach to supervisory control 3	
	9.2	Quant	ised systems	
		9.2.1	Continuous-variable system	
		9.2.2	Quantisation of the signal spaces	
		9.2.3	Example: two-tank system	
		9.2.4	Behaviour of quantised systems 3	395
		9.2.5	Stochastic properties of quantised systems 3	
	9.3	A beha	avioural view on supervision problems 4	103
	9.4	Discre	te-event models of quantised systems 4	107
		9.4.1	The modelling problem4	107
		9.4.2	Description of autonomous quantised systems by stochas-	
			tic automata4	801
		9.4.3	Extensions to systems with input and output 4	115
		9.4.4	Abstractions of faulty systems 4	
	9.5	State	observation of quantised systems 4	
		9.5.1	Observation method 4	
		9.5.2	Discussion of the result 4	
		9.5.3	Observation algorithm 4	122
	9.6		osis of quantised systems	
		9.6.1	Diagnostic method 4	
		9.6.2	Discussion of the result 4	
		9.6.3	Diagnostic algorithm	126
		9.6.4	Automatic reconfiguration of diagnosis in case of sen-	
			sor or actuator faults 4	
		9.6.5	Extensions and application examples 4	
	9.7	Fault-	tolerant control of quantised systems 4	
		9.7.1	Reconfiguration problem	
		9.7.2	Graph-theoretic formulation of the control problem 4	
		9.7.3	A reconfiguration method 4	
		Bibliog	graphical notes4	137

10.	App	lication examples	439
	10.1	Fault-tolerant control of a three-tank system	439
		10.1.1 The control problem	439
		10.1.2 Generic component-based analysis of the three-tank	
		system	
		10.1.3 Solution of the reconfiguration task	
	10.2	Diagnosis and fault-tolerant control of a chemical process	
		10.2.1 System description and control aims	
		10.2.2 Plant model for diagnosis	
		10.2.3 Experimental diagnostic results	
		10.2.4 Control reconfiguration in case of actuator faults	
	10.3	Diagnosis and control of a ship propulsion system $\hdots\dots$	
		10.3.1 Structure of the ship propulsion system	
		10.3.2 Models of the propulsion system	
		10.3.3 Fault scenarios and requirements on the diagnosis \ldots	
		10.3.4 Structural analysis of the propulsion system	481
		10.3.5 Fault diagnosis by using the parity space approach and	
			485
		10.3.6 Diagnosis of the pitch control loop by means of the	
		quantised systems approach	
		10.3.7 Fault-tolerant propulsion	
	10.4	Supervision of a steam generator	
		10.4.1 Description of the process	
		10.4.2 Modeling of the steam generator	
		10.4.3 Design of the diagnostic system	
		10.4.4 Structural analysis	
		10.4.5 Fault signatures	
		10.4.6 Experimental results	
		10.4.7 Fault scenarios	
	.	10.4.8 Conclusions	
	10.5	Summary: A guideline for the design of fault-tolerant control.	
		10.5.1 Architecture	
		10.5.2 Design procedure	
		Bibliographical notes	525
Rei	eren	ces	527
٠		Appendices	
		rppondioos	
Ap	pend	ix 1: Some prerequisites on vectors and matrices	537
\mathbf{Ap}	pend	ix 2: Notions of probability theory	540
Δn	nand	iv 3. He and H. controller design	559

Appendix 4: Nomenclature	558
Appendix 5: Terminology	559
Appendix 6: Dictionary	562
Subject index	566

Contents