

Contents

1	Introduction	1
1.1	A Few Time Series Concepts	2
1.1.1	Some Simple Stochastic Processes	3
1.1.2	Stationarity, Mean Reversion, Impulse Responses	6
1.1.3	Numerical Exercise: Simulating Simple Stochastic Processes	9
1.2	Structural Macroeconomic Models	12
1.2.1	Static Structural Models	12
1.2.2	Dynamic Structural Models	16
1.2.3	Stochastic, Dynamic Structural Models	21
1.2.4	Stochastic Simulation	23
1.2.5	Numerical Exercise – Simulating Dynamic, Structural Macroeconomic Models	24
1.3	Why are Economic Growth Models Interesting?	27
1.3.1	Microeconomic Foundations of Macroeconomics	27
1.3.2	Lucas' Critique on Economic Policy Evaluation	33
1.3.3	A Brief Overview of Developments on Growth Theory	35
1.3.4	The Use of Growth Models for Actual Policy Making	39
1.4	Numerical Solution Methods	40
1.4.1	Why do we Need to Compute Numerical Solutions to Growth Models?	40
1.4.2	Stability	42
1.4.3	Indeterminacy	43
1.4.4	The Type of Questions We Ask and the Conclusions We Reach	44
1.5	Synopsis of the Book	48
2	The Neoclassical Growth Model Under a Constant Savings Rate	53
2.1	Introduction	53
2.2	Returns to Scale and Sustained Growth	54

2.3	The Neoclassical Growth Model of Solow and Swan	59
2.3.1	Description of the Model	60
2.3.2	The Dynamics of the Economy	61
2.3.3	Steady-State	64
2.3.4	The Transition Towards Steady-State	68
2.3.5	The Duration of the Transition to Steady-State	69
2.3.6	The Growth Rate of Output and Consumption	69
2.3.7	Convergence in the Neoclassical Model	71
2.3.8	A Special Steady-State: The Golden Rule of Capital Accumulation	73
2.4	Solving the Continuous-Time Solow–Swan Model	76
2.4.1	Solution to the Exact Model	76
2.4.2	The Linear Approximation to the Solow–Swan Model	77
2.4.3	Changes in Structural Parameters	79
2.4.4	Dynamic Inefficiency	82
2.5	The Deterministic, Discrete-Time Solow Swan Model	85
2.5.1	The Exact Solution	85
2.5.2	Approximate Solutions to the Discrete-Time Model	87
2.5.3	Numerical Exercise – Solving the Deterministic Solow–Swan Model	89
2.5.4	Numerical Exercise – A Permanent Change in the Savings Rate	91
2.5.5	Numerical Exercise – Dynamic Inefficiency	93
2.6	The Stochastic, Discrete Time Version of the Solow–Swan Model	95
2.6.1	Numerical Exercise – Solving the Stochastic Solow–Swan Model	96
2.7	Exercises	98
3	Optimal Growth. Continuous Time Analysis	101
3.1	The Continuous-Time Version of the Cass–Koopmans Model	101
3.1.1	Optimality Conditions for the Cass–Koopmans Model	103
3.1.2	The Instantaneous Elasticity of Substitution of Consumption (<i>IES</i>)	104
3.1.3	Risk Aversion and the Intertemporal Substitution of Consumption	106
3.1.4	Keynes–Ramsey Condition	107
3.1.5	The Optimal Steady-State	108
3.1.6	Numerical Exercise: The Sensitivity of Steady-State Levels to Changes in Structural Parameters	110
3.1.7	Existence, Uniqueness and Stability of Long-Run Equilibrium – A Graphical Discussion	112
3.1.8	Suboptimality of the Golden Rule	114
3.2	Stability and Convergence	115
3.2.1	The Trajectory for Income	119

3.2.2	Numerical Exercise – Characterizing the Transition after a Change in a Structural Parameter	120
3.3	Interpreting the Central Planners's Model as a Competitive Equilibrium Economy	126
3.3.1	The Efficiency of Competitive Equilibrium	129
3.4	A Competitive Equilibrium with Government	131
3.4.1	The Structure of the Economy	131
3.4.2	Feasible Stationary Public Expenditure and Financing Policies	135
3.4.3	Competitive Equilibrium	135
3.4.4	Global Constraint of Resources	136
3.4.5	The Representative Agent Problem	136
3.5	On the Efficiency of Equilibrium with Government	138
3.5.1	On the Efficiency of Equilibrium Under Lump-Sum Taxes and Debt	138
3.5.2	The Inefficiency of the Competitive Equilibrium Allocation Under Distortionary Taxes	140
3.6	The Ricardian Doctrine	146
3.6.1	The Ricardian Doctrine Under Non-Distorting Taxes	146
3.6.2	Failure of the Ricardian Doctrine Under Distorting Taxes	147
3.7	Appendix	149
3.7.1	Appendix 1 – Log-linear Approximation to the Continuous Time Version of Cass–Koopmans Model	149
3.7.2	Appendix 2 – An Alternative Presentation of the Equivalence Between the Planner's and the Competitive Equilibrium Mechanisms in an Economy Without Government	150
3.8	Exercises	153
4	Optimal Growth. Discrete Time Analysis	155
4.1	Discrete-Time, Deterministic Cass–Koopmans Model	155
4.1.1	The Global Constraint of Resources	155
4.1.2	Discrete-Time Formulation of the Planner's Problem	157
4.1.3	The Optimal Steady-State	158
4.1.4	The Dynamics of the Model: The Phase Diagram	159
4.1.5	Transversality Condition in Discrete Time	161
4.1.6	Competitive Equilibrium with Government	162
4.2	Fiscal Policy in the Cass–Koopmans Model	167
4.2.1	The Deterministic Case	167
4.2.2	Numerical Exercise – Solving the Deterministic Competitive Equilibrium with Taxes	176
4.2.3	Numerical Exercise – Fiscal Policy Evaluation	179
4.3	Appendices	185
4.3.1	A Reformulation of the Stability Condition for the Deterministic Version of the Model	185

4.3.2	The Intertemporal Government Budget Constraint	187
4.4	Appendix 2: The Ricardian Proposition Under Non-Distortionary Taxes in Discrete Time	190
4.5	Exercises	191
5	Numerical Solution Methods	195
5.1	Numerical Solutions and Simulation Analysis	195
5.2	Analytical Solutions to Simple Growth Models	197
5.2.1	A Model with Full Depreciation	197
5.2.2	A Model with Leisure in the Utility Function	200
5.2.3	Numerical Solutions of the Growth Model Under Full Depreciation	202
5.3	Solving a Simple, Stochastic Version of the Planner’s Problem	203
5.3.1	Solving the Linear-Quadratic Approximation to the Planner’s Problem	204
5.3.2	The Log-Linear Approximation to the Model	210
5.3.3	The Blanchard–Kahn Solution Method for the Stochastic Planner’s Problem. Log-Linear Approximation	212
5.3.4	Uhlig’s Undetermined Coefficients Approach. Log-Linear Approximation	215
5.3.5	Sims’ Eigenvalue-Eigenvector Decomposition Method Using a Linear Approximation to the Model	217
5.4	Solving the Stochastic Representative Agent’s Problem with Taxes	225
5.4.1	The Log-Linear Approximation	227
5.4.2	Numerical Exercise: Solving the Stochastic Representative Agent’s Model with Taxes Through Blanchard and Kahn’s Approach. Log-Linear Approximation	228
5.4.3	Numerical Exercise: Computing Impulse Responses to a Technology Shock. Log-Linear Approximation	232
5.4.4	Numerical Exercise: Solving the Stochastic Representative Agent’s Model with Taxes Through the Eigenvector and Eigenvalue Decomposition Approach. Linear Approximation	234
5.5	Nonlinear Numerical Solution Methods	238
5.5.1	Parameterized Expectations	238
5.5.2	Projection Methods	241
5.6	Appendix – Solving the Planner’s Model Under Full Depreciation	251
5.7	Exercises	253
6	Endogenous Growth Models	257
6.1	The AK Model	257
6.1.1	Balanced Growth Path	259
6.1.2	Transitional Dynamics	259
6.1.3	Boundedness of Time-Aggregate Utility	261

6.2	The Discrete Time Version of the Model	262
6.2.1	The Transversality Condition and Bounded Utility	265
6.2.2	Absence of Transitional Dynamics: Relationship Between the Stock of Physical Capital and Consumption	266
6.3	Stability in the AK Model	267
6.4	Effects from Transitory Changes in Policy Parameters	271
6.4.1	A Policy Intervention	272
6.4.2	A Comparison with the Cass–Koopmans Economy	273
6.5	Dynamic Laffer Curves	275
6.5.1	Numerical Exercise on Dynamic Laffer Curves	278
6.6	Solving the Stochastic, Discrete Time Version of the AK Model	280
6.6.1	A Linear Approximation to the Stochastic AK Model	282
6.6.2	Numerical Exercise: Solving the Stochastic AK Model	285
6.7	An Endogenous Growth Model with Productive Public Expenditures: Barro’s Model	286
6.8	Transitional Dynamics in Endogenous Growth: The Jones and Manuelli Model	288
6.8.1	Steady-State	290
6.8.2	Solving the Deterministic Version of Jones and Manuelli’s Model Through a Linear Approximation	291
6.9	The Stochastic Version of Jones and Manuelli Model	294
6.9.1	Deterministic Balanced Growth Path	295
6.9.2	Transforming the Model in Stationary Ratios	295
6.9.3	The Phase Diagram of the Deterministic Version of the Jones–Manuelli Model: Transitional Dynamics	296
6.9.4	Computing the Dynamics: Log–Linear Approximation	298
6.9.5	Numerical Exercise: Solving the Jones and Manuelli Model	301
6.9.6	The Stochastic AK Model as a Special Case	301
6.10	Exercises	302
7	Additional Endogenous Growth Models	305
7.1	Introduction	305
7.2	A Variety of Producer Products	306
7.2.1	The Economy	306
7.2.2	The Inefficiency of the Equilibrium Allocation	314
7.2.3	A Stochastic Version of the Economy with a Variety of Intermediate Goods	316
7.3	Technological Diffusion and Growth	323
7.3.1	The Problem of the Follower Country	324
7.3.2	Deterministic Steady-State	326
7.3.3	Computing the Numerical Solution by Log–Linear Approximations and Numerical Derivatives	328

7.3.4	Numerical Exercise: Solving the Model with Varieties of Intermediate Goods, and the Diffusion Growth Model	332
7.4	Schumpeterian Growth	333
7.4.1	The Economy	334
7.4.2	Computing Equilibrium Trajectories	338
7.4.3	Deterministic Steady-State	341
7.5	Endogenous Growth with Accumulation of Human Capital	342
7.5.1	The Economy	343
7.5.2	The Competitive Equilibrium	347
7.5.3	Analyzing the Deterministic Steady-State	349
7.5.4	Numerical Exercise: Steady-State Effects of Fiscal Policy	352
7.5.5	Computing Equilibrium Trajectories in a Stochastic Setup Under the Assumption of Rational Expectations	353
7.5.6	Indeterminacy of Equilibria	363
7.5.7	Numerical Exercise: The Correlation Between Productivity and Hours Worked in the Human Capital Accumulation Model	374
7.6	Exercises	376
8	Growth in Monetary Economies: Steady-State Analysis of Monetary Policy	377
8.1	Introduction	377
8.2	Optimal Growth in a Monetary Economy: The Sidrauski Model	378
8.2.1	The Representative Agent's Problem	380
8.2.2	Steady-State in the Monetary Growth Economy	384
8.2.3	Golden Rule	387
8.3	Steady-State Policy Analysis	388
8.3.1	Optimal Steady-State Rate of Inflation	389
8.3.2	The Welfare Cost of Inflation	392
8.4	Two Modelling Issues: Nominal Bonds and the Timing of Real Balances	394
8.4.1	Nominal Bonds: The Relationship Between Real and Nominal Interest Rates	395
8.4.2	Real Balances in the Utility Function: At the Beginning or at the End of the Period?	397
8.4.3	Numerical Exercise: Optimal Rate of Inflation Under Alternative Assumptions on Preferences	400
8.5	Monetary Policy Analysis Under Consumption and Income Taxes	401
8.5.1	Steady-State	403
8.5.2	Numerical Exercise: Computation of Steady-State Levels Under Alternative Policy Choices	405
8.6	Monetary Policy Under Endogenous Labor Supply	406
8.6.1	The Neutrality of Monetary Policy Under Endogenous Labor Supply	406
8.6.2	Numerical Exercise: Evaluation of Steady-State Policies with an Endogenous Labour Supply	411

8.7	Optimal Monetary Policy Under Distortionary Taxation and Endogenous Labor	413
8.7.1	The Model	414
8.7.2	Implementability Condition	417
8.7.3	The Ramsey Problem	418
8.8	Exercises	419
9	Transitional Dynamics in Monetary Economies:	
	Numerical Solutions	423
9.1	Introduction	423
9.2	Stability of Public Debt	424
9.3	Alternative Strategies for Monetary Policy: Control of Nominal Rates vs. Money Growth Control	426
9.4	Deterministic Monetary Model with the Monetary Authority Choosing Money Growth	427
9.4.1	Steady-State	429
9.4.2	Solution Through a Log-Linear Approximation	430
9.4.3	Complex Eigenvalues	433
9.5	Deterministic Monetary Model with the Monetary Authority Choosing Nominal Interest Rates	437
9.6	Transitional Effects of Policy Interventions	441
9.6.1	Solving the Model with Nominal Interest Rates as Control Variable, Using a Linear Approximation	442
9.6.2	Numerical Exercise: Changes in Nominal Interest Rates	444
9.6.3	Solving the Model with Money Growth as Control Variable, Using a Linear Approximation	445
9.6.4	Numerical Exercise: Gradual vs. Drastic Changes in Money Growth	448
9.7	The Stochastic Version of the Monetary Model	450
9.7.1	The Monetary Authority Chooses Nominal Interest Rates ..	452
9.7.2	The Monetary Authority Chooses Money Supply Growth ..	463
9.8	A New Keynesian Monetary Model	469
9.8.1	A Model Without Capital Accumulation: Ireland's (2004) ..	470
9.8.2	A New Keynesian Monetary Model with Capital Accumulation	477
9.9	Appendix: In a Log-Linear Approximation, $E_t \hat{\pi}_{t+1} = \hat{r}_t - \hat{r}_t$	491
9.10	Exercises	492
10	Mathematical Appendix	495
10.1	The Deterministic Control Problem in Continuous Time	495
10.1.1	Transversality Condition	496
10.1.2	The Discounted Problem	496
10.1.3	Calculus of Variations	498
10.2	The Deterministic Control Problem in Discrete Time	499
10.3	First Order Differential Equations	501

10.3.1 1. First Order Differential Equations with Constant Coefficients	501
10.3.2 2. First Order Differential Equations with Variable Coefficients	504
10.4 Matrix Algebra	506
10.4.1 The 2×2 Case	508
10.4.2 Systems with a Saddle Path Property	510
10.4.3 Imposing Stability Conditions Over Time	510
10.5 Some Notes on Complex Numbers	513
10.6 Solving a Dynamic Two-Equation System with Complex Roots	514
References	517
Index	521