Statistical Mechanics

A Short Treatise

With 21 Figures

Table of Contents

1.	Cla	ssical Statistical Mechanics	1
	1.1	Introduction	1
	1.2	Microscopic Dynamics	3
	1.3	Time Averages and the Ergodic Hypothesis	10
	1.4	Recurrence Times and Macroscopic Observables	14
	1.5	Statistical Ensembles or "Monodes" and Models	
		of Thermodynamics. Thermodynamics Without Dynamics .	17
	1.6	Models of Thermodynamics. Microcanonical and Canonical	
		Ensembles and the Ergodic Hypothesis	20
	1.7	Critique of the Ergodic Hypothesis	24
	1.8	Approach to Equilibrium and Boltzmann's Equation.	
		Ergodicity and Irreversibility	27
	1.9	A Historical Note. The Etymology of the Word "Ergodic"	
		and the Heat Theorems	36
	App	pendix 1.A1 Monocyclic Systems, Keplerian Motions	
		and Ergodic Hypothesis	44
	App	pendix 1.A2 Grad–Boltzmann Limit and Lorentz's Gas	48
2.	Statistical Ensembles		57
	2.1	Statistical Ensembles as Models of Thermodynamics	57
	2.2	Canonical and Microcanonical Ensembles: Orthodicity	60
	2.3	Equivalence Between Canonical	
		and Microcanonical Ensembles	68
	2.4	Non-equivalence of the Canonical and Microcanonical	
		Ensembles. Phase Transitions. Boltzmann's Constant	73
	2.5	The Grand Canonical Ensemble	
		and Other Orthodic Ensembles	76
	2.6	Some Technical Aspects	84
3.	Equipartition and Critique		89
	3.1	Equipartition and Other Paradoxes and Applications	
		of Statistical Mechanics	89
	3.2	Classical Statistical Mechanics	
		When Cell Sizes Are Not Negligible	95

XII Table of Contents

	$3.3 \\ 3.4$	Introduction to Quantum Statistical Mechanics Philosophical Outlook on the Foundations	103
	0.1	of Statistical Mechanics	107
4.	Thermodynamic Limit and Stability		111
	4.1	The Meaning of the Stability Conditions	111
	4.2	Stability Criteria	114
	4.3	Thermodynamic Limit	117
5.	Phase Transitions		129
	5.1	Virial Theorem, Virial Series and van der Waals Equation .	129
	5.2	The Modern Interpretation	
		of van der Waals' Approximation	136
	5.3	Why a Thermodynamic Formalism?	142
	5.4	Phase Space in Infinite Volume	
		and Probability Distributions on It. Gibbs Distributions	144
	5.5	Variational Characterization	
		of Translation Invariant Gibbs Distributions	147
	5.6	Other Characterizations of Gibbs Distributions.	
		The DLR Equations	153
	5.7	Gibbs Distributions and Stochastic Processes	155
	5.8	Absence of Phase Transitions: $d = 1$. Symmetries: $d = 2$	157
	5.9	Absence of Phase Transitions: High Temperature	
		and the KS Equations	161
	5.10	Phase Transitions and Models	167
	App	endix 5.A1 Absence of Phase Transition	
		in Non-Nearest-Neighbor One-Dimensional Systems	172
6.	Coexistence of Phases		175
	6.1	The Ising Model. Inequivalence of Canonical	
		and Grand Canonical Ensembles	175
	6.2	The Model. Grand Canonical and Canonical Ensembles.	
		Their Inequivalence	176
	6.3	Boundary Conditions. Equilibrium States	178
	6.4	The Ising Model in One and Two Dimensions	
,		and Zero Field	180
	6.5	Phase Transitions. Definitions	182
	6.6	Geometric Description of the Spin Configurations	184
	6.7	Phase Transitions. Existence	188
	6.8	Microscopic Description of the Pure Phases	189
	6.9	Results on Phase Transitions in a Wider Range	
		of Temperature	192
	6.10	•	
		Phenomenological Considerations	196

		Table of Contents	VIII
	6.11	Separation and Coexistence of Phases. Results	198
	6.12	Surface Tension in Two Dimensions. Alternative Description of the Separation Phenomena	199
	6.13	The Structure of the Line of Separation. What a Straight Line Really Is	200
	6.14	Phase Separation Phenomena and Boundary Conditions. Further Results	202
	6.15	Further Results, Some Comments and Some Open Problems	202
		and some Open I roblems	200
7.	Exa	ctly Soluble Models	209
	$7.1 \\ 7.2$	Transfer Matrix in the Ising Model: Results in $d=1,2$ Meaning of Exact Solubility	209
		and the Two-Dimensional Ising Model	211
٠	7.3	Vertex Models	214
	7.4	A Nontrivial Example of Exact Solution:	
		The Two-Dimensional Ising Model	221
	7.5	The Six-Vertex Model and Bethe's Ansatz	227
8.	Bro	wnian Motion	233
	8.1	Brownian Motion and Einstein's Theory	233
	8.2	Smoluchowski's Theory	239
	8.3	The Uhlenbeck–Ornstein Theory	242
	8.4	Wiener's Theory	246
9.	Coa	rse Graining and Nonequilibrium	253
	9.1	Ergodic Hypothesis Revisited	253
	9.2	Timed Observations and Discrete Time	257
	9.3	Chaotic Hypothesis. Anosov Systems	260
	9.4	Kinematics of Chaotic Motions. Anosov Systems	265
	9.5	Symbolic Dynamics and Chaos	270
	9.6	Statistics of Chaotic Attractors. SRB Distributions	278
	9.7	Entropy Generation. Time Reversibility	•
		and Fluctuation Theorem. Experimental Tests	
	•	of the Chaotic Hypothesis	281
	9.8	Fluctuation Patterns	287
	9.9	"Conditional Reversibility" and "Fluctuation Theorems"	288
		Onsager Reciprocity and Green–Kubo's Formula	292
	9.11	Reversible Versus Irreversible Dissipation. Nonequilibrium Ensembles?	294
	App	endix 9.A1 Mécanique statistique hors équilibre:	
		l'héritage de Boltzmann	298
	App	endix 9.A2 Heuristic Derivation of the SRB Distribution	308

XIV Table of Contents

Appendix 9.A3 Aperiodic Motions Can Be Regarded	
as Periodic with Infinite Period!	310
Appendix 9.A4 Gauss' Least Constraint Principle	311
Bibliography	313
Name Index	331
Subject Index	333