Contents

Preface xiii

Part I Solid Oxide Fuel Cell with Ionic Conducting Electrolyte 1

1	Introduction 3	
	Bin Zhu and Peter D. Lund	
1.1	An Introduction to the Principles of Fuel Cells 3	
1.2	Materials and Technologies 5	
1.3	New Electrolyte Developments on LTSOFC 10	
1.4	Beyond the State of the Art: The Electrolyte-Free Fuel Cell (EFFC)	20
1.4.1	Fundamental Issues 23	
1.5	Beyond the SOFC 25	
	References 28	
2	Solid-State Electrolytes for SOFC 35	
	Liangdong Fan	
2.1	Introduction 35	
2.2	Single-Phase SOFC Electrolytes 37	
2.2.1	Oxygen Ionic Conducting Electrolyte 37	
2.2.1.1	Stabilized Zirconia 37	
2.2.1.2	Doped Ceria 39	
2.2.1.3	SrO- and MgO-Doped Lanthanum Gallates (LSGM) 42	
2.2.2 Proton-Conducting Electrolyte and Mixed Ionic Conducting		
	Electrolyte 42	
2.2.3	Alternative New Electrolytes and Research Interests 44	
2.3	Ion Conduction/Transportation in Electrolytes 49	
2.4	Composite Electrolytes 52	
2.4.1	Oxide–Oxide Electrolyte 52	
2.4.2	Oxide–Carbonate Composite 53	
2.4.2.1	Materials Fabrication 54	
2.4.2.2	Performance and Stability Optimization 57	
2.4.3	Other Oxide-Salt Composite Flectrolytes 60	

vi	Contents	
	,	

2.4.4	Ionic Conduction Mechanism Studies of Ceria-Carbonate
0.5	Composite 62
2.5	NANOCOFC and Material Design Principle 66
2.6	Concluding Remarks 67
	Acknowledgments 69 References 69
	References 69
3	Cathodes for Solid Oxide Fuel Cell 79
	Tianmin He, Qingjun Zhou, and Fangjun Jin
3.1	Introduction 79
3.2	Overview of Cathode Reaction Mechanism 80
3.3	Development of Cathode Materials 82
3.3.1	Perovskite Cathode Materials 82
3.3.1.1	Mn-Based Perovskite Cathodes 83
3.3.1.2	Co-Based Perovskite Cathodes 85
3.3.1.3	Fe-Based Perovskite Cathodes 88
3.3.1.4	Ni-Based Perovskite Cathodes 89
3.3.2	Double Perovskite Cathode Materials 89
3.4	Microstructure Optimization of Cathode Materials 94
3.4.1	Nanostructured Cathodes 94
3.4.2	Composite Cathodes 97
3.5	Summary 102
	References 103
4	Anodes for Solid Oxide Fuel Cell 113
	Chunwen Sun
4.1	Introduction 113
4.2	Overview of Anode Reaction Mechanism 114
4.2.1	
4.2.1.1	Basic Operating Principles of a SOFC 114
4.0	Basic Operating Principles of a SOFC 114 The Anode Three-Phase Boundary 115
4.3	
4.3 4.3.1	The Anode Three-Phase Boundary 115
	The Anode Three-Phase Boundary 115 Development of Anode Materials 117
4.3.1 4.3.2 4.3.2.1	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni–YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118
4.3.1 4.3.2 4.3.2.1 4.3.2.2	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni–YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120
4.3.1 4.3.2 4.3.2.1	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni–YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124
4.3.1 4.3.2 4.3.2.1 4.3.2.2	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni–YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135 Acknowledgments 137
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 118 Alternative Anode Materials 118 Fluorite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135 Acknowledgments 137 References 137
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135 Acknowledgments 137 References 137 Design and Development of SOFC Stacks 145
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4 4.5	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135 Acknowledgments 137 References 137 Design and Development of SOFC Stacks 145 Wanbing Guan
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 118 Alternative Anode Materials 118 Fluorite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135 Acknowledgments 137 References 137 Design and Development of SOFC Stacks 145 Wanbing Guan
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 117 Alternative Anode Materials 118 Fluorite Anode Materials 118 Perovskite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4 4.5	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 118 Alternative Anode Materials 118 Fluorite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135 Acknowledgments 137 References 137 Design and Development of SOFC Stacks 145 Wanbing Guan
4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.3 4.4 4.5	The Anode Three-Phase Boundary 115 Development of Anode Materials 117 Ni-YSZ Cermet Anode Materials 118 Alternative Anode Materials 118 Fluorite Anode Materials 120 Sulfur-Tolerant Anode Materials 124 Development of Kinetics, Reaction Mechanism, and Model of the Anode 126 Summary and Outlook 135 Acknowledgments 137 References 137 Design and Development of SOFC Stacks 145 Wanbing Guan Introduction 145

	Contents vii
5.2.2	Variations of Cell Output Performance Under 2D Contact Mode 147
5.2.3	2D Interface Structure Improvements and Enhancement of Cell Output Performance 149
5.2.4	Contributions of 3D Contact in 2D Interface Contact 151
5.2.5	Mechanism of Performance Enhancement After the Transition from 2D to 3D Interface 153
5.3	Control Design of Transition from 2D to 3D Interface Contact and Their Quantitative Contribution Differentiation 156
5.3.1	Control Design of 2D and 3D Interface Contact 156
5.3.2	Quantitative Effects of 2D Contact on the Transient Output Performance of a Cell 158
5.3.3	Quantitative Effects of 2D Contact on the Steady-State Output Performance of the Cell 161
5.3.4	Quantitative Effects of 3D Contact on Cell Transient Performance 163
5.3.5	Quantitative Effects of 3D Contact on the Steady-State Performance of a Cell 166
5.3.6	Differences Between 2D and 3D Interface Contacts 169
5.4	Conclusions 171 References 172
	Part II Electrolyte-Free Fuel Cells: Materials, Technologies, and Working Principles 173
6	Electrolyte-Free SOFCs: Materials, Technologies, and Working
	Principles 175 Bin Zhu, Liangdong Fan, Jung-Sik Kim, and Peter D. Lund
6.1	Concept of the Electrolyte-Free Fuel Cell 175
6.2	SLFC Using the Ionic Conductor-based Electrolyte 177
6.3	Developments on Advanced SLFC 179
6.4	From SLFCs to Semiconductor–Ionic Fuel Cells (SIFCs) 184
6.5	The SLFC Working Principle 196
6.6	Remarks 204
	Acknowledgments 207
	References 207
7	Ceria Fluorite Electrolytes from Ionic to Mixed Electronic and
	Ionic Membranes 213
	Baoyuan Wang, Liangdong Fan, Yanyan Liu, and Bin Zhu
7.1	Introduction 213
7.2	Doped Ceria as the Electrolyte for Intermediate Temperature SOFCs 214
7.3	Surface Doping for Low Temperature SOFCs 216
7.4	Non-doped Ceria for Advanced Low Temperature SOFCs 222 References 235

 Jing Shi and Sining Yun 8.1 Oxygen Diffusion in Perovskite Oxides 239 8.1.1 Oxygen Vacancy Formation 239 8.1.2 Oxygen Diffusion Mechanisms 242 8.1.3 Anisotropy Oxygen Transport in Layered Perovskites 244 8.1.3.1 Oxygen Transport in Ruddlesden-Popper (RP) Perovskites 244 8.1.3.2 Oxygen Transport in A-Site Ordered Double Perovskites 244 8.1.4 Oxygen Ion Diffusion at Grain Boundary 246 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 248 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton-Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3 Summary 266 Acknowledgments 267 References 267 9 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu 9.1 Introduction 275 9.1 Introduction 275
 8.1.1 Oxygen Vacancy Formation 239 8.1.2 Oxygen Diffusion Mechanisms 242 8.1.3 Anisotropy Oxygen Transport in Layered Perovskites 244 8.1.3.1 Oxygen Transport in Ruddlesden—Popper (RP) Perovskites 244 8.1.3.2 Oxygen Transport in A-Site Ordered Double Perovskites 244 8.1.4 Oxygen Ion Diffusion at Grain Boundary 246 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 248 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton—Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p—n Heterojunctions 265 8.3 Summary 266 Acknowledgments 267 References 267 9 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu 9.1 Introduction 275
 8.1.2 Oxygen Diffusion Mechanisms 242 8.1.3 Anisotropy Oxygen Transport in Layered Perovskites 244 8.1.3.1 Oxygen Transport in Ruddlesden—Popper (RP) Perovskites 244 8.1.3.2 Oxygen Transport in A-Site Ordered Double Perovskites 244 8.1.4 Oxygen Ion Diffusion at Grain Boundary 246 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 248 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton—Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p—n Heterojunctions 265 8.3.2.3 p—n Heterojunction Structures in SOFC 265 8.4 Summary 266 Acknowledgments 267 References 267 9 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu 9.1 Introduction 275
 8.1.3 Anisotropy Oxygen Transport in Layered Perovskites 244 8.1.3.1 Oxygen Transport in Ruddlesden–Popper (RP) Perovskites 244 8.1.3.2 Oxygen Transport in A-Site Ordered Double Perovskites 244 8.1.4 Oxygen Ion Diffusion at Grain Boundary 246 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 248 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton–Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.3.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.1.3.1 Oxygen Transport in Ruddlesden-Popper (RP) Perovskites 244 8.1.3.2 Oxygen Transport in A-Site Ordered Double Perovskites 244 8.1.4 Oxygen Ion Diffusion at Grain Boundary 246 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 248 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton-Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.3.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.1.3.2 Oxygen Transport in A-Site Ordered Double Perovskites 244 8.1.4 Oxygen Ion Diffusion at Grain Boundary 246 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 248 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton-Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.1.4 Oxygen Ion Diffusion at Grain Boundary 246 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 248 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton-Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conductivity by Band Bending 263 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.1.5 Factors Controlling Oxygen Migration Barriers in Perovskites 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton-Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266 Acknowledgments 267 References 267 9 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu 9.1 Introduction 275
 8.2 Proton Diffusion in Perovskite-Type Oxides 249 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton-Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.2.1 Proton Diffusion Mechanisms 249 8.2.2 Proton-Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.2.2 Proton-Dopant Interaction 253 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.2.2.1 Influence of Dopants in A-site 253 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.2.2.2 Influence of Dopants in B-Site 254 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.2.3 Long-range Proton Conduction Pathways in Perovskites 255 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.2.4 Hydrogen-Induced Insulation 256 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.3 Enhanced Ion Conductivity in Oxide Heterostructures 259 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.3.1 Enhanced Ionic Conduction by Strain 259 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.3.2 Enhanced Ionic Conductivity by Band Bending 263 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.3.2.1 Surface State-induced Band Bending 263 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.3.2.2 Band Bending in p-n Heterojunctions 265 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.3.2.3 p-n Heterojunction Structures in SOFC 265 8.4 Summary 266
 8.4 Summary 266 Acknowledgments 267 References 267 9 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu 9.1 Introduction 275
Acknowledgments 267 References 267 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu 9.1 Introduction 275
 References 267 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu Introduction 275
 Material Development II: Natural Material-based Composites for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu Introduction 275
for Electrolyte Layer-free Fuel Cells 275 Chen Xia and Yanyan Liu 9.1 Introduction 275
Chen Xia and Yanyan Liu 9.1 Introduction 275
9.1 Introduction 275
0.1.1 Materials Development for EFFCs 275
9.1.1 Materials Development for EFFCs 275
9.1.2 Natural Materials as Potential Electrolytes 276
9.2 Industrial-grade Rare Earth for EFFCs 279
9.2.1 Rare-earth Oxide LCP 280
9.2.2 Semiconducting–Ionic Composite Based on LCP 281
9.2.2.1 LCP-LSCF 282
9.2.2.2 LCP–ZnO 284
9.2.3 Stability Operation and Schottky Junction of EFFC 288
9.2.3.1 Performance Stability 288
9.2.3.2 In Situ Schottky Junction Effect 288
9.2.4 Summary 290
9.3 Natural Hematite for EFFCs 291
9.3.1 Natural Hematite 292
9.3.2 Semiconducting—Ionic Composite Based on Hematite 295

9.3.2.1 9.3.2.2 9.3.3 9.4 9.4.1 9.4.2 9.4.3	Hematite–LSCF 295 Hematite/LCP–LSCF 297 Summary 300 Natural CuFe Oxide Minerals for EFFCs 302 Natural CuFe $_2$ O $_4$ Mineral for EFFC 302 Natural Delafossite CuFeO $_2$ for EFFC 305 Summary 308 Bio-derived Calcite for EFFC 308
9.5.1	Bio-derived Calcite for EFFC 309
9.5.2	Summary 312 References 314
10	Charge Transfer, Transportation, and Simulation 319 Muhammad Afzal, Mustafa Anwar, Muhammad I. Asghar, Peter D. Lund, Naveed Jhamat, Rizwan Raza, and Bin Zhu
10.1	Physical Aspects 319
10.2	Electrochemical Aspects 320
10.3	Ionic Conduction Enhancement in Heterostructure Composites 321
10.4	Charge Transportation Mechanism and Coupling Effects 326
10.5	Surface and Interfacial State-Induced Superionic Conduction and Transportation 330
10.6	Ionic Transport Number Measurements 331
10.7	Determination of Electron and Ionic Conductivities in EFFCs 332
10.8	EIS Analysis 334
10.9	Semiconductor Band Effects on the Ionic Conduction Device
	Performance 335
10.10	Simulations 339
	Acknowledgments 343
	References 343
11	Electrolyte-Free Fuel Cell: Principles and Crosslink Research 347
	Yan Wu, Liangdong Fan, Naveed Mushtaq, Bin Zhu, Muhammad Afzal,
	Muhammad Sajid, Rizwan Raza, Jung-Sik Kim, Wen-Feng Lin, and Peter D.
	Lund
11.1	Introduction 347
11.2	Fundamental Considerations of Fuel Cell Semiconductor
11.2	Electrochemistry 353
11.2.1	Physics and Electrochemistry at Interfaces 353
11.2.2	Electrochemistry vs. Semiconductor Physics 355
11.3	Working Principle of Semiconductor-Based Fuel Cells and Crossing Link Sciences 356
11.4	Extending Applications by Coupling Devices 367
11.5	Final Remarks 368
11.0	Acknowledgments 372
	References 373

v			
•			

	Part III Fuel Cells: From Technology to Applications 377
12	Scaling Up Materials and Technology for SLFC 379
	Kang Yuan, Zhigang Zhu, Muhammad Afzal, and Bin Zhu
12.1	Single-Layer Fuel Cell (SLFC) Engineering Materials 379
12.2	Scaling Up Single-Layer Fuel Cell Devices: Tape Casting and Hot
12.2	Pressing 383
12.3	Scaling Up Single-Layer Fuel Cell Devices: Thermal Spray Coating
12.0	Technology 386
12.3.1	Traditional Plasma Spray Coating Technology 387
12.3.1	New Developed Low-Pressure Plasma Spray (LPPS) Coating
12.5.2	Technology 388
12.4	Short Stack 395
12.4.1	SLFC Cells 395
12.4.2	Bipolar Plate Design 396
12.4.3	Sealing and Sealant-Free Short Stack 396
12.5	Tests and Evaluations 397
12.6	Durability Testing 399
12.7	A Case Study for the Cell Degradation Mechanism 400
12.8	Continuous Efforts and Future Developments 404
12.9	Concluding Remarks 409
	References 411
13	Diamen COEC (to als Designs and Designs and A15)
13	Planar SOFC Stack Design and Development 415 Shaorong Wang, Yixiang Shi, Naveed Mushtag, and Bin Zhu
121	Internal Manifold and External Manifold 415
13.1 13.2	Interface Between an Interconnect Plate and a Single Cell 416
13.2	Antioxidation Coating of the Interconnect Plate 418
13.4	Design the Flow Field of Interconnect Plate 419
13.4.1	Mathematical Simulation 420
13.4.2	Effect of Co-flow, Crossflow, and Counterflow 422
13.4.3	Air Flow Distribution Between Layers in a Stack 424
13.5	The Importance of Sealing 424
13.5.1	Thermal Cycling of the Sealing 428
13.5.2	Durability of Sealing 428
13.6	The Life of the Stack: The Chemical Problems on the Interface 429
13.7	Toward Market Products 431
13.8	Concluding Remarks 443
	References 443
14	Energy System Integration and Future Perspectives 447
	Ghazanfar Abbas, Muhammad Ali Babar, Fida Hussain, and Rizwan Raza
14.1	Solar Cell and Fuel Cell 447
14.2	Fuel Cell–Solar Cell Integration 450
14.3	Solar Electrolysis–Fuel Cell Integration 452
14.4	Fuel Cell–Biomass Integration 453
14.5	The Fuel Cell System Modeling Using Biogas 454

14.5.1	Activation Loss 457
14.5.2	Ohmic Loss 457
14.5.3	Concentration Voltage Loss 458
14.6	The Fuel Cell System Efficiency (Heating and Electrical) 458
14.6.1	The Effect of Different Temperatures on System Efficiency 458
14.6.2	The Fuel Utilization Factor and Efficiencies of the System 458
14.6.3	The System Efficiencies and Operating Pressure 460
14.7	Integrated New Clean Energy System 460
14.8	Summary 462
	References 462

Index 465