Contents

_		•			
D.	ra'	ra	ce	x	
г		ıa	vc	·	ļ

Part i Reactions via Nickelacycles	Part I	Reactions via Nickelacycle	S.
------------------------------------	--------	----------------------------	----

1	Formation of Nickelacycles and Reaction with Carbon
	Monoxide 3
	Sensuke Ogoshi
1.1	Introduction 3
1.2	Formation of Hetero-nickelacycles from Nickel(0) 3
1.3	Stoichiometric Reaction of Hetero-nickelacycles with Carbon
	Monoxide 4
	References 9
2	Transformation of Aldehydes via Nickelacycles 13
	Yoichi Hoshimoto
2.1	Introduction and Scope of This Chapter 13
2.2	Catalytic Transformation of Aldehydes Through Three-Membered
	Oxanickelacycle Complexes 14
2.3	Catalytic Transformation of Aldehydes Through Five-Membered
	Oxanickelacycle Complexes 18
2.4	Catalytic Transformation of Aldehydes Through Seven-Membered
	Oxanickelacycle Complexes 22
2.5	Conclusion and Outlook 23
	References 25
3	Transformation of Imines via Nickelacycles 29
	Masato Ohashi
3.1	Introduction 29
3.2	[2+2+1] Carbonylative Cycloaddition of an Imine and Either an
	Alkyne or an Alkene Leading to γ-Lactams 29
3.3	[2+2+2] Cycloaddition Reaction of an Imine with Two Alkynes:
	Formation of 1,2-Dihydropyridine Derivatives 31

3.4	Three-Component Coupling and Cyclocondensation Reactions of an Imine, an Alkyne, and Alkylmetal Reagents 34 References 37
4	Asymmetric C—C Bond Formation Reactions via Nickelacycles 39
	Ravindra Kumar and Sensuke Ogoshi
4.1	Introduction 39
4.2	Enantioselective Reactions Involving Nickelacycles 39
4.2.1	Nickel-Catalyzed Asymmetric Coupling of Alkynes and Aldehydes 39
4.2.1.1	Nickel-Catalyzed Asymmetric Reductive Coupling of Alkynes and Aldehydes 40
4.2.1.2	Nickel-Catalyzed Asymmetric Alkylative Coupling of Alkynes and Aldehydes 43
4.2.2	Nickel-Catalyzed Asymmetric Coupling of Alkynes and Imines 44
4.2.3	Nickel-Catalyzed Asymmetric Coupling of 1,3-Enynes and Aldehydes 45
4.2.4	Nickel-Catalyzed Asymmetric Coupling of 1,3-Enynes and Ketones 46
4.2.5	Nickel-Catalyzed Asymmetric Coupling of 1,3-Dienes and Aldehydes 47
4.2.6	Nickel-Catalyzed Asymmetric Coupling of Enones and Alkynes 50
4.2.6.1	Nickel-Catalyzed Asymmetric Alkylative Coupling of Enones and Alkynes 50
4.2.6.2	Nickel-Catalyzed Asymmetric Coupling of Enones and Alkynes 51
4.2.7	Nickel-Catalyzed Asymmetric Coupling of Arylenoates and Alkynes 55
4.2.8	Nickel-Catalyzed Asymmetric Coupling of Diynes with Ketenes 56
4.2.9	Nickel-Catalyzed Asymmetric Coupling of Allenes, Aldehydes, and Silanes 57
4.2.10	Nickel-Catalyzed Asymmetric Coupling of Allenes and Isocyanates 58
4.2.11	Nickel-Catalyzed Asymmetric Coupling of Alkenes, Aldehydes, and Silanes 59
4.2.12	Nickel-Catalyzed Asymmetric Coupling of Formamide and Alkene 61
4.2.13	Nickel-Catalyzed Asymmetric Coupling of Alkynes and Cyclopropyl Carboxamide 63
4.3	Miscellaneous 64
4.3.1	Nickel-Catalyzed Asymmetric Annulation of Pyridones via Hydroarylation to Alkenes 64
4.3.2	Nickel-Catalyzed Asymmetric Synthesis of Benzoxasilole 65
4.4	Overview and Future Perspective 66 References 67

Part II Functionalization of Unreactive Bonds 69

5	Recent Advances in Ni-Catalyzed Chelation-Assisted Direct
	Functionalization of Inert C—H Bonds 71
	Yan-Hua Liu, Fang Hu, and Bing-Feng Shi
5.1	Introduction 71
5.2	Ni-Catalyzed Functionalization of Inert C—H Bonds Assisted by
	Bidentate Directing Groups 71
5.2.1	Arylation 72
5.2.2	Alkylation 76
5.2.3	Alkenylation 83
5.2.4	Alkynylation 85
5.2.5	Other C—C Bond Formation Reactions Directed by Bidentate
	Directing Group 88
5.2.6	C—N Bond Formation 89
5.2.7	C-Chalcogen (Chalcogen = O, S, Se) Bond Formation 89
5.2.8	C–Halogen Bond Formation 92
5.3	Ni-Catalyzed Functionalization of Inert C—H Bonds Assisted by
	Monodentate Directing Groups 94
5.3.1	Alkylation 94
5.3.2	Alkenylation 95
5.3.3	Alkynylation 96
5.3.4	C–Calcogen Bond Formation 97
5.4	Summary 98
	References 98
6	C—C Bond Functionalization 103
	Yoshiaki Nakao
6.1	Introduction 103
6.2	C—C Bond Functionalization of Three-Membered Rings 103
6.3	C—C Bond Functionalization of Four- and Five-Membered
	Rings 110
6.4	C—C Bond Functionalization of Less Strained Molecules 113
6.5	C—CN Bond Functionalization 115
6.6	Summary and Outlook 116
	References 117
7	C—O Bond Transformations 123
	Mamoru Tobisu
7.1	Introduction 123
7.2	C(aryl)—O Bond Cleavage 124
7.2.1	Aryl Esters, Carbamates, and Carbonates 124
7.2.2	Aryl Ethers 132
7.2.3	Arenols 136
7.3	C(benzyl)—O Bond Cleavage 138

viii	Contents
• • • • •	Contents

7.3.1	Benzyl Esters and Carbamates 138
7.3.2	Benzyl Ethers 140
7.4	C(acyl)—O Bond Cleavage 141
7.5	Summary and Outlook 144
	References 145
	Part III Coupling Reactions via Ni(I) and/or Ni(III) 151
	rate iii Coopiiiig iicactions via iii(i) ana/or iii(iii) 151
8	Photo-Assisted Nickel-Catalyzed Cross-Coupling
	Processes 153
	Christophe Lévêque, Cyril Ollivier, and Louis Fensterbank
8.1	Introduction 153
8.2	Development of Visible-Light Photoredox/Nickel Dual Catalysis 154
8.2.1	For the Formation of Carbon–Carbon Bonds 154
8.2.1.1	
8.2.1.2	• ,
8.2.1.3	0 1
8.2.1.4	
8.2.1.5	Starting from Alkylsulfinates 168
8.2.1.6	Starting from Alkyl Bromides 168
8.2.1.7	
8.2.1.8	Starting from Sp ³ CH Bonds 169
8.2.2	For the Formation of Carbon–Heteroatom Bonds 170
8.2.2.1	
8.2.2.2	
8.2.2.3	Formation of C—S Bond 171
8.3	Energy-Transfer-Mediated Nickel Catalysis 173
8.4	Conclusion 175
	References 176
_	
9	Cross-Electrophile Coupling: Principles and New
	Reactions 183
0.1	Matthew M. Goldfogel, Liangbin Huang, and Daniel J. Weix
9.1	Introduction 183
9.2	Mechanistic Discussion of Cross-Electrophile Coupling 185
9.3	C(sp ²)—C(sp ³) Bond Formation 188
9.3.1	Cross-Electrophile Coupling of Aryl-X and Alkyl-X 188
9.3.2	Cross-Electrophile Coupling of ArX and Bn-X 195
9.3.3	Cross-Electrophile Coupling of ArX and Allyl-X 196
9.3.4	Vinyl-X with R-X 197
9.3.5	Acyl-X with Alkyl-X 199 $C(n^2) C(n^2) Counting 201$
9.4	$C(sp^2)$ – $C(sp^2)$ Coupling 201
9.4.1 9.4.2	Aryl-X/Vinyl-X + Aryl-X/Vinyl-X 201
9.4.2 9.5	Aryl- $X + Acyl-X = 202$ C(sp ³)-C(sp ³) Coupling 203
7.0	C(sp)—C(sp) Coupling 203

9.6	$C(sp)-C(sp^3)$ Coupling 205
9.7	Multicomponent Reactions 206
9.8	Future of the Field 208
	References 209
	•
10	Organometallic Chemistry of High-Valent Ni(III) and Ni(IV)
	Complexes 223
	Liviu M. Mirica, Sofia M. Smith, and Leonel Griego
10.1	Introduction 223
10.2	Organometallic Ni(III) Complexes 223
10.3	Organometallic Ni(IV) Complexes 234
10.4	Other High-Valent Ni Complexes 239
10.4.1	Additional Ni ^{III} Complexes 239
10.4.2	Additional Ni ^{IV} Complexes 241
10.5	Conclusions and Outlook 243
	References 244
	Part IV Carbon Dioxide Fixation 249
11	Carbon Dioxide Fixation via Nickelacycle 251
••	Ryohei Doi and Yoshihiro Sato
11.1	Introduction: Carbon Dioxide as a C1 Building Block 251
11.2	Formation, Structure, and Reactivity of Nickelalactone 252
11.2.1	Formation and Characterization of Nickelalactone via Oxidative
	Cyclization with CO_2 252
11.2.1.1	Reaction with Alkene 252
	Reaction with Allene 255
	Reaction with Diene 256
	Reaction with Alkyne 257
	Other Related Reactions 260
	Generation of Nickelalactone Without CO ₂ 261
11.2.2	-
	Transmetalation with Organometallic Reagent 261
	β-Hydride Elimination 263
	Insertion of Another Unsaturated Molecule 264
	Retro-cyclization 265
	Nucleophilic Attack 265
	Oxidation 267
	Ligand Exchange 267
11.3	Catalytic Transformation via Nickelalactone 1: Reactions of
11.0	Alkynes 268
11.3.1	Synthesis of Pyrone 268
	Initial Finding 268
	Reaction of Diynes with CO_2 268
11.3.1.2	Synthesis of α, β -Unsaturated Ester 269
11.0.4	3ymmesis of u,p-onsaturated Ester 209

X	Contents
---	----------

11.3.2.1	Electrochemical Reactions 269
11.3.2.2	Reduction with Organometallic Reagents 270
11.4	Catalytic Transformation via Nickelalactone 2: Reactions of Alkenes
	and Related Molecules 271
11.4.1	Transformation of Diene, Allene, and Substituted Alkene 271
11.4.1.1	Coupling of Diene with CO ₂ 271
11.4.1.2	Electrochemical Process 272
11.4.1.3	Use of Reductant 272
11.4.2	Synthesis of Acrylic Acid from Ethylene and CO ₂ 274
11.4.2.1	Before the Dawn 275
11.4.2.2	Development of Catalytic Reaction 276
11.5	Concluding Remarks 278
	References 279
12	Relevance of Ni(I) in Catalytic Carboxylation Reactions 285
	Rosie J. Somerville and Ruben Martin
12.1	Introduction 285
12.2	Mechanistic Building Blocks 287
12.2.1	Additives 287
12.2.2	Coordination of CO ₂ 287
12.2.3	Insertion/C—C Bond Formation 288
12.2.4	Ligand Effects 289
12.2.5	Oxidative Addition 290
12.2.6	Oxidation State 290
12.2.7	Single Electron Transfer (SET) 290
12.2.8	Conclusion 290
12.3	Electrocarboxylation 291
12.3.1	Introduction 291
12.3.2	Phosphine Ligands 294
12.3.3	Bipyridine and Related α-Diimine Ligands 296
12.3.4	Salen Ligands 297
12.3.5	Conclusion 298
12.4	Non-electrochemical Methods 298
12.4.1	Aryl Halides 300
12.4.2	Benzyl Electrophiles 304
12.4.3	Carboxylation of Unactivated Alkyl Electrophiles 306
12.4.4	Carboxylation of Allyl Electrophiles 312
12.4.5	Unsaturated Systems 315
12.5	Conclusions 318
	References 319