

1	Phosphines and Related Tervalent Phosphorus Systems	1
	<i>Piet W. N. M. van Leeuwen</i>	
1.1	Introduction	1
1.1.1	History	1
1.1.2	Alternative Ligands	2
1.1.3	Aim of the Chapter	2
1.2	Synthesis of Phosphorus Ligands	3
1.2.1	Introduction	3
1.2.2	Nucleophilic Substitution by Carbanions at P ^{δ+}	3
1.2.3	Phosphorus–Carbon Bond Cleavage and Phosphido Anion Preparation	7
1.2.4	Phosphido Anions as Nucleophiles	9
1.2.5	P–H Addition to Unsaturates	12
1.2.6	Reduction of Phosphine Oxides and Sulfides	13
1.2.7	X/Y-Substitution at Phosphorus	14
1.2.8	Aryl-X in Metal-Catalyzed Cross-Coupling	15
1.2.9	Quaternization and Reduction	16
1.2.10	The Use of R ₂ PCH ₂ ⁻ Anions in Phosphine Synthesis	16
1.3	Ligand Properties	18
1.3.1	Electronic Properties	18
1.3.2	Steric Properties	20
1.3.3	The Bite Angle of Bidentate Ligands	22
1.3.4	Chirality	25
1.3.4.1	P-Stereogenic or P-Chiral Ligands	25
1.3.4.2	Chiral Backbone	27
1.3.4.3	Chiral Substituents at Phosphorus	27
1.3.4.4	Axial Asymmetry or Atropisomery	27
1.3.4.5	Spiro Diphosphines	28
1.3.4.6	Planar Asymmetry	28
1.3.4.7	Helical Symmetry	29
1.4	Rhodium-Catalyzed Hydroformylation with Xantphos-Type Ligands	29
1.4.1	Introduction	29

1.4.2	Monophosphines, Characterization Studies, and Diphosphines	30
1.5	Cross-Coupling Catalysis with Mono- and Bidentate Phosphines	33
1.5.1	Introduction and Simplified Mechanism	33
1.5.2	Oxidative Addition	34
1.5.3	Transmetallation	37
1.5.4	Reductive Elimination	37
1.6	Decomposition Reactions	43
1.6.1	Phosphine Decomposition	43
1.6.1.1	Phosphine Oxidation	43
1.6.1.2	P–C Cleavage of Ligands	44
1.6.2	Phosphite Decomposition	47
	References	50

2 Recent Developments in Phosphonium Chemistry 59

Mathieu Berchel and Paul-Alain Jaffrès

2.1	Introduction	59
2.2	Synthesis of Phosphonium Salts	60
2.3	Phosphonium Salts as a Tool for Organic Synthesis	70
2.3.1	Phosphonium Salts as Ionic Liquids	70
2.3.2	Phase Transfer Catalysis (PTC)	74
2.3.3	Coupling Agent for Peptide Synthesis	78
2.4	Phosphonium Salts for Biological and Medical Applications	84
2.4.1	Targeting Mitochondria	84
2.4.1.1	Anticancer Drugs	86
2.4.1.2	Imaging Agents	90
2.4.2	Phosphonium Salts for Nucleic Acid Delivery	92
2.4.3	Phosphonium Salts as Antimicrobial Agents	96
2.5	Conclusion	102
	References	103

3 Phosphorus Ylides and Related Compounds 113

Alejandro Presa Soto and Joaquín García-Álvarez

3.1	Introduction	113
3.2	Preparation of Phosphorus Ylides	115
3.2.1	Synthesis of Phosphorus Ylides from Phosphonium Salts	116
3.2.2	One-Pot Three-component Reactions of Phosphines, Dialkyl Acetylenedicarboxylates, and Various Organic Nucleophiles	121
3.2.3	Other Methodologies for the Synthesis of Phosphorus Ylides	125
3.3	Applications of Phosphorus Ylides in Organic Synthesis	130
3.3.1	Wittig Reaction	130
3.3.1.1	Application of Wittig Reaction in Cyclization Processes	133
3.3.1.2	Application of Wittig Reaction in Tandem Processes	135
3.3.1.3	Application of Wittig Reaction in Total Synthesis of Natural Products	140
3.3.1.4	Wittig Reactions with Nonstabilized Ylides	142

3.3.1.5	Application of Wittig Reaction in Nonconventional Solvents or Under Solvent-free Conditions	144
3.3.2	Other Organic Reactions of Phosphorus Ylides	146
3.4	Conclusions	148
	Acknowledgments	148
	References	148
4	Low-Coordinate Phosphorus Compounds with Phosphaorganic Multiple Bond Systems	163
	<i>Dietrich Gudat</i>	
4.1	Introduction	163
4.2	General Considerations on Structure and Bonding of PC Multiple Bond Systems	165
4.2.1	Bonding and Stability	165
4.2.2	Structural and Spectroscopic Data	169
4.3	Synthetic Approaches	171
4.3.1	Acyclic Phosphaalkenes	171
4.3.2	Phosphaalkynes	174
4.3.3	Delocalized Ring Systems: Phosphinines and Phospholides	175
4.4	Reactivity	177
4.4.1	Addition and Cycloaddition Reactions	177
4.4.2	Reactions with Electrophiles	179
4.4.3	Reactions with Nucleophiles	180
4.4.4	Oxidation, Reduction, and Metathesis	181
4.4.5	Metal Coordination	181
4.5	Applications of Phosphorus–Carbon Multiple Bond Systems	184
4.5.1	PC Multiple Bond Systems in π -Conjugated Materials	184
4.5.2	Oligomerization of PC Multiple Bond Systems: Building Rings and Cages	188
4.5.3	Polymeric Materials from PC Multiple Bond Systems	192
4.5.4	Chiral Phosphorus-Containing Multiple Bond Systems	195
4.5.5	PC Multiple Bond Systems in Coordination Chemistry and Catalysis	198
4.5.6	PC Multiple Bond Systems for Nanoparticle Stabilization and Surface Functionalization	206
	References	209
5	Pentacoordinate Phosphorus Compounds	219
	<i>Masaaki Yoshifuji</i>	
5.1	History of Pentacoordinate Phosphorus Compounds	219
5.2	Preparation of Pentacoordinate Phosphorus Compounds	221
5.3	Structure of Trigonal Bipyramidal and Square Pyramid	228
5.4	Interconversion of Pentacoordinate Phosphorus Compounds	229
5.5	Apicophilicity	232
5.6	Hydrolysis of Phosphate Esters	233
	References	235

6	Hexacoordinate Phosphorus Compounds	239
	<i>Masaaki Yoshifuji</i>	
6.1	Preparation and Structure of Hexacoordinate Phosphorus Compounds	239
6.2	Stereochemistry of Hexacoordinate Phosphorus Compounds	241
6.3	Hexacoordinate Compounds with Intramolecular Coordination	242
6.4	Theoretical Studies on Hexacoordinate Phosphorus Compounds	245
6.5	Hexacoordinate Phosphates as Counter Anions for Complex Ligands	245
	References	247
7	Methods for the Introduction of the Phosphonate Moiety into Complex Organic Molecules	249
	<i>Wouter Debrouwer, Iris Wauters, and Christian V. Stevens</i>	
7.1	Introduction	250
7.2	P—C (sp^3) Bond Formation	252
7.2.1	Michaelis–Arbuzov Reaction	252
7.2.2	Abramov Reaction	254
7.2.3	Michaelis–Becker Reaction	254
7.2.4	Pudovik Reaction	254
7.2.5	Kabachnik–Fields Reaction	256
7.2.6	Transition-metal-Catalyzed Coupling Reactions	257
7.2.7	Hydrophosphonylation of Unsaturated C—C Bonds	258
7.2.7.1	Palladium-Catalyzed Hydrophosphonylation	258
7.2.7.2	Rhodium-Catalyzed Hydrophosphonylation	259
7.2.7.3	Manganese-Catalyzed Hydrophosphonylation	260
7.2.7.4	Michael Addition	261
7.3	P—C (sp^2) Bond Formation	261
7.3.1	Michaelis–Arbuzov Reaction	261
7.3.2	Transition-metal-Catalyzed Coupling Reactions	264
7.3.2.1	Palladium-Catalyzed Coupling	264
7.3.2.2	Copper-Catalyzed Coupling	271
7.3.2.3	Nickel-Catalyzed Coupling	272
7.3.3	Hydrophosphonylation	273
7.3.4	Other Methods	275
7.3.4.1	Insertion of Phosphonylated Zirconacycles into Alkynes	275
7.3.4.2	Derivatization of Alkynylphosphonates	276
7.3.4.3	Electrophilic Phosphorus Reagents	276
7.3.4.4	Radical Trapping with Trialkyl Phosphites	277
7.3.4.5	Electrochemical Synthesis of Organophosphorus Compounds	277
7.3.4.6	Horner–Wadsworth–Emmons Approach	278
7.4	P—C (sp) Bond Formation	278
7.4.1	Michaelis–Arbuzov Reaction	278
7.4.2	Electrophilic Phosphorus Reagents	279
7.4.2.1	Grignard Reagents	279
7.4.2.2	Lithiated Reagents	280
7.4.2.3	Other Metal Acetylides	280

7.4.3	Transition-metal-Catalyzed Coupling Reactions	281
7.4.3.1	Copper-Catalyzed Coupling	281
7.4.3.2	Palladium-Catalyzed Coupling	283
7.4.4	Other Methods	284
7.4.4.1	Isomerization of Allenylphosphonates	284
7.4.4.2	Heating of Selenoxides	285
7.5	Conclusion	285
	References	286

8 Phosphorus Heterocycles 295

Viktor Iaroshenko and Satenik Mkrtchyan

8.1	Introduction	295
8.2	Five-Membered Phosphorus Heterocycles	296
8.3	Five-Membered Phosphorus Heterocycles with One Phosphorus Atom: 1 <i>H</i> -Phospholes and Fused Aromatic Systems Containing Phosphole Ring	296
8.4	Aromaticity of 1 <i>H</i> -Phospholes and 1 <i>H</i> -Phosphole-Containing Heterocyclic Systems	303
8.5	1 <i>H</i> -Phospholes	305
8.6	Synthesis of 1 <i>H</i> -Phospholes Following [4+1] and [2+2+1] Synthetic Strategies	307
8.7	Synthesis of Phospholes by [3+2] Cyclization Reaction	312
8.8	Synthesis of 1 <i>H</i> -Phospholes by Intramolecular Cyclization Reactions	312
8.9	Synthesis of Phosphorus-Containing Porphyrin Hybrids	316
8.10	Fused Heterocycles with 1 <i>H</i> -Phosphole Structural Fragment	317
8.11	Synthesis-Fused 1 <i>H</i> -Phospholes Following [4+1] and [2+2+1] Synthetic Strategies	320
8.12	Synthesis of Fused Phospholes Following [3+2] Synthetic Strategies	324
8.13	Synthesis of Fused Phospholes Following Intramolecular Cyclization Strategies	329
8.14	Application of C—H Bond Activation Protocols for the Synthesis of Benzo[<i>b</i>]phosphindoles via Intramolecular Cyclization	339
8.15	Synthesis of π -Conjugated Benzo[<i>b</i>]phosphindoles Following [2+2+2] Cycloaddition Synthetic Strategy	341
8.16	Five-Membered Phosphorus Heterocycles with One Heteroatom	342
8.16.1	1,2- and 1,3-Heterophospholes: General Overview	342
8.17	Synthesis of 1,2- and 1,3-Heterophospholes: General Overview	345
8.18	1,2-Azaphospholes	347
8.18.1	Synthesis of 1,2-Azaphospholes Following [4+1] Synthetic Strategies	347
8.19	Synthesis of 1,2-Azaphospholes Following [3+2] Synthetic Strategies	351
8.20	Synthesis of Fused 1,2-Azaphospholes via Intramolecular Cyclization Strategy	353

8.21	Synthesis of 1,2-Oxophospholes, 1,2-Thiaphospholes, and 1,2-Selenophospholes	356
8.22	1,3-Azaphospholes	359
8.22.1	Synthesis of 1,3-Azaphosphole Following [4+1] Synthetic Strategies	359
8.23	Synthesis of 1,3-Azaphospholes by Intramolecular Cyclization Reactions	362
8.24	Synthesis of 1,3-Oxaphospholes, 1,3-Thiaphospholes, and 1,3-Selenophospholes	365
8.25	Six-Membered Phosphorus Heterocycles	372
8.26	Phosphinines: General Overview	372
8.27	Synthesis of λ^3 - and λ^5 -Phosphenines: General Overview	376
8.28	Synthesis of Phosphenines Following [5+1] Synthetic Strategy	378
8.29	Synthesis of Phosphenines Following [4+2] Synthetic Strategy	381
8.30	Synthesis of Phosphenines from Phospholes	388
8.31	Synthesis of Phosphenines Following 1,6-Electrocyclization Strategy	393
8.32	Synthesis of Fused λ^3 - and λ^5 -Phosphenines: General Overview	396
8.33	Synthesis of Fused Phosphenines Following [4+2] Synthetic Strategy	397
8.34	Synthesis of Fused Phosphenines by Intramolecular Cyclization	400
8.35	Synthesis of Fused Phosphenines Following [5+1] Synthetic Strategy	401
8.36	Six-Membered Phosphorus Heterocycles with One Heteroatom	404
8.37	Synthesis 1,2-, 1,3-, and 1,4-Heterophosphinines	408
8.38	1,2-Azaphosphenines	408
8.39	Synthesis of 1,2-Azaphosphenines Following [3+1+1+1] Synthetic Strategy	409
8.40	Synthesis of 1,2-Azaphosphenines Following [3+3] Synthetic Strategy	414
8.41	Synthesis of 1,2-Azaphosphenines Following [3+2+1] Synthetic Strategies	414
8.42	Synthesis of 1,2-Azaphosphenines Following [5+1] Synthetic Strategies	414
8.43	Synthesis of 1,2-Azaphosphenines Following [4+2] Synthetic Strategies	415
8.44	Synthesis of 1,2-Azaphosphenines Following Intramolecular Cyclization Strategies	417
8.45	1,3-Azaphosphenines	419
8.46	Synthesis of 1,3-Azaphosphenines Following [5+1] Synthetic Strategy	419
8.47	Synthesis of 1,3-Azaphosphenines Following [4+2] Synthetic Strategies	419
8.48	1,4-Azaphosphenines	421
8.49	Oxygen- and Sulfur-Containing Heterophosphinines	424
8.50	Application and Synthesis of Phosphoborine Systems	429
8.51	Application and Synthesis of 1,4-Phosphasilane System	432

8.52	Synthesis of Germanium- and Tin-Containing Heterophosphinines	437
	References	441
9	Modern Aspects of ^{31}P NMR Spectroscopy	457
	<i>David S. Glueck</i>	
9.1	Introduction	457
9.1.1	Properties of the ^{31}P NMR Nucleus and Experimental Details	457
9.1.2	^{31}P NMR Chemical Shifts	458
9.1.3	Coupling Constants	458
9.1.4	What is New About This Review	459
9.2	Chemical Shifts	459
9.2.1	Chemical Shifts for Common Organophosphorus Compounds	459
9.2.2	^{31}P NMR Chemical Shifts for Organophosphorus Heterocycles	459
9.2.3	Beyond the Normal Chemical Shift Range	459
9.2.4	Isotope Shifts	460
9.2.5	From Chemical Shifts to Structure and Bonding	460
9.2.6	Prediction of ^{31}P NMR Chemical Shifts	462
9.2.6.1	Structural Assignment Assisted by Computation of ^{31}P NMR Chemical Shifts	463
9.3	Coupling Constants	464
9.3.1	P–H Couplings	464
9.3.1.1	$^1J_{\text{PH}}$	464
9.3.1.2	Conformational Effects on $^3J_{\text{PH}}$	464
9.3.2	P–P Couplings	466
9.3.3	P–Se Couplings: Lewis Base Strength	468
9.3.4	P–Pt Couplings: <i>Trans</i> Influence	469
9.4	Two-Dimensional (2D) ^{31}P NMR Techniques	469
9.4.1	Connectivity via 2D Correlation Experiments	470
9.4.1.1	Correlation Spectroscopy (COSY)	470
9.4.1.2	Semiconstant time COSY	470
9.4.1.3	Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC)	470
9.4.2	Intramolecular Distances via ^{31}P – ^1H Heteronuclear Overhauser Enhancement Spectroscopy (HOESY)	471
9.5	Analytical Methods	471
9.5.1	Quantification by ^{31}P NMR Integration	472
9.5.2	Direct Analysis of Organophosphorus Compounds	472
9.5.3	Indirect Analysis via Derivatization of Analytes with Organophosphorus Compounds	473
9.5.4	^{31}P NMR Spectroscopic Probes	474
9.5.4.1	Measurement of Enantiomeric or Diastereomeric Purity of Chiral Phosphines	474
9.5.4.2	Phosphorus Labels for Measuring Enantiomeric Purity	475
9.5.5	Spectroscopic Probes for Lewis Acidity	475
9.6	Diffusion-Ordered NMR Spectroscopy (DOSY)	476
9.6.1	DOSY Analysis of Organophosphorus Compounds	476

9.6.1.1	Hydrogen Bonding to Phosphine Oxides	476
9.6.1.2	Ion Pairing	477
9.6.1.3	Monomer or Dimer?	477
9.6.1.4	Polymer Characterization	477
9.6.1.5	Quantitative Determination of Molecular Size or Formula Weight	477
9.6.2	DOSY Analysis of Phosphorus-Tagged Analytes	478
9.6.2.1	Phosphitylation of Small Molecules	478
9.6.2.2	Phosphorus-Labeled Biomolecules	479
9.7	Solid-State (SS) ^{31}P NMR	479
9.7.1	Probes of Solid-State Structure and Reactivity	479
9.7.1.1	Anchoring Phosphines to Solid Supports	479
9.7.1.2	Reactions on Surfaces: Sarin	480
9.7.1.3	Spectroscopic Probe of Solid Acids	480
9.7.2	Solid-State vs Solution Structure	481
9.7.2.1	PPh_3Cl_2	481
9.7.2.2	Pt-phosphaalkene Coordination Mode	481
9.7.2.3	A Ru-Pyrrolato Complex: Monomer or Dimer?	481
9.7.3	Structure and Bonding	482
9.7.3.1	P–B Interactions in Phosphine–Borane–Frustrated Lewis Pairs	482
9.7.3.2	Ti=P Multiple Bonding in a Phosphinidene Complex	482
9.7.3.3	Distance Information from Transferred Echo Double Resonance (TEDOR)	483
9.8	Physical and Chemical Processes of Organophosphorus Compounds	483
9.8.1	Dynamic Processes	483
9.8.1.1	Restricted Rotation	483
9.8.1.2	Pyramidal Inversion	484
9.8.1.3	Pseudorotation	484
9.8.2	Chemical Exchange	485
9.8.2.1	Tautomerization	485
9.8.2.2	Te Exchange in Phosphine Tellurides	487
9.8.2.3	Phosphine Dissociation	487
9.9	Identification of Intermediates and Monitoring Their Reactivity	488
9.9.1	Reaction of a Triarylphosphine with Oxygen	488
9.9.2	Phosphonium Intermediates in Asymmetric Appel Oxidation	488
9.9.3	Enhanced ^{31}P NMR Spectra via <i>para</i> -Hydrogen-Induced Polarization (PHIP)	489
9.10	Conclusion	490
	Acknowledgment	490
	References	490
10	Phosphorus in Chemical Biology and Medicinal Chemistry	499
	<i>Marlon Vincent V. Duro, Dana Mustafa, Boris A. Kashemirov, and Charles E. McKenna</i>	
10.1	Phosphorus and Life: An Introduction	499

10.2	Unnatural Nucleotides as Chemical Tools in Biology	500
10.2.1	Base-Modified Nucleoside Triphosphates	501
10.2.2	Modifications Within the Triphosphate	504
10.2.3	Modifications at the Terminal Phosphate	514
10.3	Prodrugs of Nucleoside Phosphates and Phosphonates	516
10.3.1	Approaches for Nucleoside Monophosph(on)ates	517
10.3.2	Prodrugs of Nucleoside Di- and Triphosphates	521
10.4	Synthesis and Medical Applications of Bisphosphonates	522
10.4.1	Pharmacologically Active Bisphosphonates (and Phosphonocarboxylates)	523
10.4.2	Synthesis of Bisphosphonates	524
10.4.3	Bisphosphonates in Medical Imaging and Drug Delivery	527
10.4.4	Lipophilic Bisphosphonates	529
10.4.5	Benefits and Risks of Bisphosphonate Therapies	530
10.5	Conclusion: The Future of Phosphorus in Chemical Biology and Medicinal Chemistry	531
	References	531
11	Future Trends in Organophosphorus Chemistry	545
	<i>Shin-ichi Kawaguchi and Akiya Ogawa</i>	
11.1	Introduction	545
11.2	Facile C—P Bond Formation Methods	545
11.2.1	Addition Reactions of Phosphorus Compounds to Unsaturated Bonds	545
11.2.2	Cross-coupling Reactions of Phosphorus Compounds	550
11.3	Utilization of Organophosphorus Compounds	551
11.3.1	Frustrated Lewis Pairs	551
11.3.2	Ionic Liquids	552
11.3.3	Fluorinated Phosphine Ligands	552
	References	553
	Index	557