Contents

Preface xv

Part I	Rhodium(I) Catalysis	1
--------	----------------------	---

1	Rhodium(I)-Catalyzed Asymmetric Hydrogenation 3
	Tsuneo Imamoto
1.1	Introduction 3
1.2	Chiral Phosphorus Ligands 3
1.2.1	P-Chirogenic Bisphosphine Ligands 4
1.2.1.1	Electron-Rich C ₂ Symmetric Ligands 4
1.2.1.2	Three-Hindered Quadrant Ligands 5
1.2.1.3	Ligands Bearing Two or Three Aryl Groups at the Phosphorus
	Atom 5
1.2.2	DuPhos, BPE, and Analogous Ligands 6
1.2.3	Ferrocene-Based Bisphosphine Ligands 7
1.2.4	C_2 Symmetric Triaryl- or Diarylphosphine Ligands with Axial
	Chirality 9
1.2.5	Phosphine–Phosphite and Phosphine–Phosphoramide Ligands 9
1.2.6	Other Bidentate Ligands 9
1.2.7	Monodentate Phosphorus Ligands 11
1.3	Application of Chiral Phosphorus Ligands in Rhodium-Catalyzed
	Asymmetric Hydrogenation 12
1.3.1	Hydrogenation of Alkenes 12
1.3.1.1	Hydrogenation of Enamides 12
1.3.1.2	Hydrogenation of Enol Esters 18
1.3.1.3	Hydrogenation of α , β -Unsaturated Acids, Esters, and Related
	Substrates 19
1.3.1.4	Hydrogenation of Other Functionalized Alkenes 21
1.3.1.5	Hydrogenation of Unfunctionalized Alkenes 24
1.3.1.6	Hydrogenation of Heteroarenes 24
1.3.2	Hydrogenation of Ketones 25
1.3.3	Hydrogenation of Imines, Oximes, and Hydrazones 26
1.4	Enantioselection Mechanism of Rhodium-Catalyzed Asymmetric
	Hydrogenation 27

1.5	Conclusion 28 References 29
2	Rhodium(I)-Catalyzed Hydroboration and Diboration 39
	Kohei Endo
2.1	Introduction 39
2.2	Hydroboration of Alkenes 39
2.2.1	Development of Catalyst Systems 39
2.2.2	Enantioselective Reactions 41
2.2.3	Hydroboration of Functionalized Molecules 44
2.3	Diboration 45
2.3.1	1,1-Diboration Reactions 45
2.3.2	1,2-Diboration Reactions 45
2.4	Conclusion 46
	References 47
3	Rhodium(I)-Catalyzed Hydroformylation and
	Hydroamination 49
	Zhiwei Chen and Vy M. Dong
3.1	Introduction 49
3.2	Rhodium(I)-Catalyzed Hydroformylation 49
3.2.1	Asymmetric Hydroformylation of Challenging Substrates 49
3.2.2	Transfer Hydroformylation 50
3.3	Rhodium(I)-Catalyzed Hydroamination 54
3.3.1	Asymmetric Rhodium(I)-Catalyzed Hydroamination 54
3.3.2	Anti-Markovnikov Rhodium(I)-Catalyzed Hydroamination 56
3.4	Conclusion 59
	References 61
4	Rhodium(I)-Catalyzed Hydroacylation 63
	Maitane Fernández and Michael C. Willis
4.1	Introduction 63
4.2	Rhodium(I)-Catalyzed Intramolecular Hydroacylation 63
4.2.1	Small Ring Synthesis: Five-Membered Rings 63
4.2.2	Larger Ring Synthesis: Six-, Seven-, and Eight-Membered Rings 66
4.3	Rhodium(I)-Catalyzed Intermolecular Hydroacylation 68
4.3.1	N-Based Chelation Control 69
4.3.2	O-Based Chelation Control 70
4.3.3	S-Based Chelation Control 73
4.3.4	C=O as a Directing Group for Hydroacylation 79
4.4	Conclusion 81
	References 81
5	Rhodium(I)-Catalyzed Asymmetric Addition of Organometallic
	Reagents to Unsaturated Compounds 85
	Hsyueh-Liang Wu and Ping-Yu Wu
5.1	Introduction 85

5.2	α,β-Unsaturated Ketones 85
5.2.1	Chiral Phosphorus Ligands 85
5.2.2	Chiral Diene Ligands 89
5.2.3	Chiral Bis-sulfoxide Ligands 92
5.2.4	Chiral Hybrid Ligands 92
5.3	α,β-Unsaturated Aldehydes 95
5.4	α,β-Unsaturated Esters 98
5.5	α,β-Unsaturated Amides 102
5.6	α,β-Unsaturated Phosphonates 105
5.7	α,β-Unsaturated Sulfonyl Compounds 105
5.8	Nitroolefin Compounds 107
5.9	Alkenylheteroarene and Alkenylarene Compounds 111
5.10	Conclusion 111
5.10	References 112
	References 112
6	Rhodium(I)-Catalyzed Allylation with Alkynes and
	Allenes 117
	Adrian B. Pritzius and Bernhard Breit
6.1	Introduction 117
6.2	Rh(I)-Catalyzed Addition of O-Nucleophiles 117
6.3	Rh(I)-Catalyzed Addition of S-Nucleophiles 123
6.4	Rh(I)-Catalyzed Addition of N-Nucleophiles 124
6.5	Rh(I)-Catalyzed Addition of C-Nucleophiles 127
6.6	Application of Rhodium-Catalyzed Addition in Total Synthesis 127
6.7	Conclusion 129
	References 130
7	Rhodium(I)-Catalyzed Reductive Carbon–Carbon Bond
	Formation 133
	Adam D. J. Calow and John F. Bower
7.1	Introduction 133
7.2	Hydroformylation 133
7.2.1	Directed Rh-Catalyzed Hydroformylation 134
7.2.2	Reversibly Bound Directing Groups in Rh-Catalyzed
	Hydroformylation 135
7.3	Reductive C—C Bond Formation Between Electron-Deficient Alkenes
,	and Carbonyls or Imines 137
7.3.1	Reductive Aldol Reactions 137
7.3.2	Reductive Mannich Reactions 142
7.4	Reductive C—C Bond Formation Between Less Polarized
,	Carbon-Based π -Unsaturated Systems and Carbonyls, Imines, or
	Anhydrides 144
7.4.1	Reductive C—C Bond Formations Between Alkenes and Carbonyls,
/ .T.1	Imines, or Anhydrides 144
7.4.2	Reductive C—C Bond Formations Between Alkynes and Carbonyls or
/ . 'I .∠	Imines 146
	IIIIIIC3 ITU

7.4.3	Miscellaneous Processes 150
7.5	Reductive C—C Bond Formation Between Carbon-Based
	π -Unsaturated Systems 151
7.5.1	C—C Bond-Forming Reactions Between Alkenes and Alkynes 151
7.5.2	C—C Bond-Forming Reactions Between Alkynes and Alkynes 154
7.6	Conclusions 156
	References 156
	Netterior 100
8	Rhodium(I)-Catalyzed [2+2+1] and [4+1] Cycloadditions 161
•	Tsumoru Morimoto
8.1	Introduction 161
8.2	[2+2+1] Cycloaddition 161
8.2.1	- · · · · · · · · · · · · · · · · · · ·
0.2.1	[2+2+1] Cycloaddition of an Alkyne, an Alkene, and CO
0011	(Pauson–Khand-Type Reaction) 161
8.2.1.1	Pauson–Khand-Type Reaction Using Aldehydes as a C1
0010	Component 162
8.2.1.2	Pauson–Khand-Type Reaction Using Formates as a C1
	Component 171
8.2.1.3	Pauson–Khand-Type Reaction Using Oxalic Acid as a C1
	Component 171
8.2.1.4	Pauson-Khand-Type Reaction Using Supported Carbon
	Monoxide 172
8.2.2	[2+2+1] Cycloaddition of Two Alkynes and CO 172
8.2.3	Carbonylative [2+2+1] Cycloaddition Including <i>hetero-</i> Multiple
	Bonds 174
8.3	[4+1] Cycloaddition 176
8.3.1	Cycloaddition of All Carbon 4π -Conjugated Systems with CO 176
8.3.2	Cycloaddition of 4π -Conjugated Systems Including Nitrogen
	Atom 178
8.4	Conclusion 179
	References 179
9	Rhodium(I)-Catalyzed [2+2+2] and [4+2] Cycloadditions 183
	Yu Shibata and Ken Tanaka
9.1	Introduction 183
9.2	[2+2+2] Cycloaddition 183
9.2.1	[2+2+2] Cycloaddition of Alkynes 184
9.2.2	[2+2+2] Cycloaddition of Alkynes with Nitriles 199
9.2.3	[2+2+2] Cycloaddition of Alkynes with Heterocumulenes 200
9.2.4	[2+2+2] Cycloaddition of Alkynes with Alkenes 207
9.2.5	[2+2+2] Cycloaddition of Alkynes with Carbonyl Compounds and
·	Imines 211
9.3	[4+2] Cycloaddition 214
9.3.1	[4+2] Cycloaddition of Alkynes with 1,3-Dienes 215
9.3.2	[4+2] Cycloaddition via C—H Bond Cleavage 218
9.3.2	Conclusion 222
J. T	References 225
	NEIGIGIES 223

10	Rhodium(I)-Catalyzed Cycloadditions Involving
	Vinylcyclopropanes and Their Derivatives 229
	Xing Fan, Cheng-Hang Liu, and Zhi-Xiang Yu
10.1	Introduction 229
10.2	VCP Isomerization Catalyzed by Rh(I) 230
10.3	Cycloaddition Reactions Using VCPs 5C Synthon 231
10.3.1	[5+1] cycloadditions of VCPs and CO 231
10.3.2	[5+1] Cycloaddition Reactions of VCP Derivatives and CO 233
10.3.3	Intermolecular [5+2] Cycloaddition Reactions 237
10.3.4	Intramolecular [5+2] Cycloaddition Reactions 239
10.3.5	[5+2] Cycloaddition Reactions of VCP Derivatives with 2π
	Components 245
10.3.6	[5+2+1] and $[5+1+2+1]$ Cycloaddition Reactions 251
10.4	Cycloaddition Reactions Using VCPs 3C Synthon 255
10.4.1	[3+2] Cycloaddition Reactions of VCPs 255
10.4.2	[3+2] Cycloaddition Reactions of VCP Derivatives and
	2π -Components 261
10.4.3	[3+2+1] Cycloaddition Reactions 262
10.4.4	[3+4] and [3+3] Cycloaddition Reactions of Vinylaziridines 264
10.5	Miscellaneous Cycloaddition 266
10.5.1	[7+1] Cycloaddition of Buta-1,3-dienylcyclopropanes 266
10.5.2	Intramolecular Reactions of ACPs and 2π -Synthon 266
10.5.3	Intramolecular Hydroacylation of VCPs 268
10.6	Conclusion 270
	Acknowledgments 270
	References 271
11	Dhadina(I) Catalanad Dagatianania Carban Hudragan Band
11	Rhodium(I)-Catalyzed Reactions via Carbon–Hydrogen Bond
	Cleavage 277
11 1	Takanori Shibata
11.1	Introduction 277
11.2 11.3	C–H Arylation 277 C–H Alkylation 279
11.3.1	Directed C–H Alkylation by Alkenes 279
11.3.1	Undirected C–H Alkylation by Alkene 281
11.3.2	C–H Alkenylation 283
11.5	Tandem Reaction Initiated by C–H Activation 285
11.6	C–H Borylation 287
11.7	Undirected Dehydrogenative C–H/Si–H Coupling 290
11.7	Conclusion 295
11.0	References 295
	References 273
12	Rhodium(I)-Catalyzed Reactions via Carbon–Carbon Bond
	Cleavage 299
	Masahiro Murakami and Naoki Ishida

12.1

Introduction 299

12.2	Reactions of Cyclopropanes and Cyclobutanes 299
12.3	Reactions via Cleavage of C(Carbonyl)—C Bonds 310
12.4	Reactions via Directing Group-Assisted C—C Bond Cleavage 315
12.5	Reactions of Alcohols via C—C Bond Cleavage 323
12.6	Reactions via Cleavage of C—CN Bond 330
12.7	Reactions via Decarbonylation of Aldehydes and Carboxylic Acid
	Derivatives 332
12.8	Conclusion 333
	References 334
	Part II Rhodium(II) Catalysis 341
13	Rhodium(II) Tetracarboxylate-Catalyzed Enantioselective C–H
	Functionalization Reactions 343
	Sidney M. Wilkerson-Hill and Huw M. L. Davies
13.1	Introduction 343
13.2	Mechanistic Insights and General Considerations 344
13.3	Development of $Rh_2(S-DOSP)_4$ as a Chiral Catalyst for C–H
	Functionalization 347
13.4	Combined C–H Functionalization/Cope Rearrangement 350
13.5	Phthalimido Amino Acid-Derived Catalysts for Intramolecular C–H
	Functionalization 353
13.6	Development of Triarylcyclopropane Carboxylate Rh(II) Complexes
	for Catalyst-Controlled Site-Selective C–H Functionalization 359
13.7	Emerging Chiral Dirhodium Catalyst for Enantioselective C-H
	Functionalization 364
13.8	New Paradigms in the Logic of Chemical Synthesis 365
13.9	Conclusion 368
	Acknowledgments 369
	References 369
14	Rhodium(II)-Catalyzed Nitrogen-Atom Transfer for Oxidation of
	Aliphatic C—H Bonds 373
	Tom G. Driver
14.1	Introduction 373
14.2	Mechanism-Inspired Development of New Rh ₂ (II) Catalysts 374
14.2.1	Mechanism of Intramolecular Rh ₂ (II)-Catalyzed C—H Bond
	Amination 374
14.2.2	Tetradentate Carboxylate Ligands for Bimetallic Rhodium(II)
	Complexes 375
14.2.3	Design, Synthesis, and Performance of Rh ₂ ^{II,III} Complexes 381
14.3	The Development of New Intramolecular Rh ₂ (II)-Catalyzed sp ³ -C—H
	Bond Amination 383
14.3.1	C—H Bond Amination of Ethereal Bonds 383
14.3.2	The Use of Rh ₂ (II)-Catalyzed C—H Bond Amination to Create Glycans
	and Glycosides 385

- 14.3.3 C—H Bond Amination of MIDA Boronates 386
- 14.3.4 Formation of Medium-Ring N-Heterocycles Through C—H Bond Amination 387
- 14.3.5 Synthesis of Spiroaminal Scaffolds 387
- 14.3.6 Expanding the Scope of C—H Bond Amination with New NH₂-Based N-Atom Precursors 389
- 14.3.7 *N*-Tosylcarbamate N-Atom Precursors in Rh₂(II)-Catalyzed C—H Bond Amination Reactions 394
- 14.3.8 Aryl Azide N-Atom Precursors in Rh₂(II)-Catalyzed sp³-C—H Bond Amination Reactions 398
- 14.4 Intermolecular Rh₂(II)-Catalyzed sp³-C—H Bond Amination Using an Iodine(III) Oxidant to Generate the Nitrene 400
- 14.4.1 Intermolecular C—H Bond Amination of Activated C—H Bonds 400
- 14.5 Non-Oxidatively Generated Nitrenes in Intermolecular Rh₂(II)-Catalyzed sp³-C—H Bond Amination 411
- 14.5.1 *N*-Tosylcarbamates as the Nitrogen-Atom Precursor in Intermolecular sp³-C—H Bond Amination Processes 411
- 14.5.2 Azides as the Nitrogen-Atom Precursor in Intermolecular sp³-C—H Bond Amination Reactions 414
- 14.6 Diastereoselective Rh₂(II)-Catalyzed sp³-C—H Bond Amination Using Chiral, Non-racemic Nitrogen-Atom Precursors 416
- 14.6.1 Intermolecular Diastereoselective C—H Bond Amination Using Sulfonimidamides 416
- 14.6.2 Intermolecular Diastereoselective C—H Bond Amination Using N-Tosylcarbamates 422
- 14.7 Enantioselective Rh₂(II)-Catalyzed sp³-C—H Bond Amination 422
- 14.7.1 Intramolecular Asymmetric C—H Bond Amination 422
- 14.8 Conclusion 429 References 430

15 Rhodium(II)-Catalyzed Cyclopropanation 433 Vincent N.G. Lindsay

- 15.1 Introduction 433
- 15.1.1 Mechanistic Considerations 434
- 15.2 Intermolecular Cyclopropanation of Alkenes 436
- 15.2.1 Via Rhodium(II) Carbenes Bearing One Electron-Withdrawing Group (Acceptor Carbenes) 438
- 15.2.2 Via Rhodium(II) Carbenes Bearing One Electron-Withdrawing Group and One Electron-Donating Group (Donor-Acceptor Carbenes) 440
- 15.2.3 Via Rhodium(II) Carbenes Bearing Two Electron-Withdrawing Groups (Acceptor–Acceptor Carbenes) 441
- 15.3 Intramolecular Cyclopropanation of Alkenes 443
- 15.4 Cyclopropanation of Poorly Nucleophilic π -Systems: Alkynes, Arenes, and Allenes as Substrates 444
- 15.5 Conclusion 445 References 445

16	Reactions of α -Imino Rhodium(II) Carbene Complexes Generated from N-Sulfonyl-1,2,3-Triazoles 449 Tomoya Miura and Masahiro Murakami	
16.1	Introduction 449	
16.2	Synthesis of <i>N</i> -Sulfonyl-1,2,3-Triazoles 451	
16.3	Reactions of Carbon Nucleophiles with α -Imino Rhodium(II) Carbene Complexes 451	
16.4	Reactions of Oxygen and Sulfur Nucleophiles with α-Imino Rhodium(II) Carbene Complexes 458	
16.5	Reactions of Nitrogen Nucleophiles with α-Imino Rhodium(II) Carbene Complexes 464	
166	Conclusion 466	
16.6	References 467	
17	Rhodium(II)-Catalyzed 1,3- and 1,5-Dipolar Cycloaddition 471	
	Nirupam De, Donguk Ko, and Eun Jeong Yoo	
17.1	Introduction 471	
17.2	1,3-Dipolar Cycloadditions of Carbonyl Ylides 471	
17.2.1	[3+2] Cycloadditions of Carbonyl Ylides and Dipolarophiles 471	
17.2.2	Chemoselective [3+2] Cycloadditions of Carbonyl Ylides 475	
17.2.3	Applications to Natural Product Synthesis 476	
17.3	1,3-Dipolar Cycloadditions of Azomethine Ylides 478	
17.4	1,3-Dipolar Cycloadditions of Fizometrinic Trides 770	
17.5	1,5-Dipolar Cycloadditions of Pyridinium Zwitterions 482	
17.6	Conclusion 484	
17.0	References 484	
	Part III Rhodium(III) Catalysis 487	
18	Rhodium(III)-Catalyzed Annulative Carbon–Hydrogen Bond Functionalization 489	
10.1	Tetsuya Satoh and Masahiro Miura	
18.1	Introduction 489	
18.2	Type A Annulation 490	
18.2.1	Annulation Utilizing Oxygen-containing Directing Group 490	
18.2.2	Annulation Utilizing Nitrogen-containing Directing Group 492	
18.2.3	Annulation Utilizing Sulfur-containing Directing Group 504	
18.2.4	Annulation Utilizing Phosphorus-containing Directing Group 506	
18.3	Type B Annulation 508	
18.4	Type C Annulation 510	
18.5	Type D Cyclization 515	
18.6	Conclusion 516	
	References 517	

19	Rhodium(III)-Catalyzed Non-annulative Carbon-Hydrogen Bond Functionalization 521
	Fang Xie and Xingwei Li
19.1	Introduction 521
19.2	Alkenylation and Arylation 522
19.2.1	Rh(III)-Catalyzed Non-annulative C—H Alkenylation 522
19.2.1.1	Oxidative Dehydrogenative Alkenylation Reactions 522
	Redox-Neutral Alkenylation with Internal Oxidizing Ability 523
	Alkenylations from Alkynes 525
19.2.2	Rh(III)-Catalyzed Non-annulative C—H Arylation 529
	Non-annulative Oxidative Dehydrogenative Arylation 529
	Other Types of C–H Arylation 533
19.3	Alkynylation 540
19.3.1	Rh(III)-Catalyzed Non-annulative C—H Alkynylation 540
19.4	Alkylation 541
19.4.1	Rh(III)-Catalyzed Non-annulative C—H Couplings with Diazo
	Compounds 541
19.4.2	Rh(III)-Catalyzed Non-annulative Allylations 543
19.4.3	Rh(III)-Catalyzed Non-annulative Alkylations Through Addition of
	C—H Bond to C=X (X = C, O, N) Bonds 552
	Addition of C—H Bond to C=C Bond 552
19.4.3.2	Addition of C—H Bond to C=O Bond 555
19.4.3.3	Addition of C—H Bond to C=N Bond 558
19.4.4	Rh(III)-Catalyzed Non-annulative Alkylations Through Opening
	Strained Rings 560
19.4.5	Rh(III)-Catalyzed Non-annulative Alkylations Through
	Transmetalation 563
19.5	C—N Bond Formation 564
19.5.1	Rh(III)-Catalyzed Non-annulative Aminations 564
19.5.2	Rh(III)-Catalyzed Non-annulative Amidations 569
19.6	Introduction of C=O Bond 577
19.6.1	Rh(III)-Catalyzed Non-annulative Acylations 577
19.6.2	Rh(III)-Catalyzed Non-annulative Amidations 579
19.7	Cyanation 579
19.8	C—O Bond Formation 580
19.9	C—X Bond Formation 581
19.9.1	Non-annulative Halogenation of Arenes 581
19.9.2	C—H Hyperiodination of Arenes 583
19.10	Non-annulative Thiolation of Arenes 585
19.11	C—Se Bond Formation 585
19.12	Conclusion 586
	References 587
20	Sterically and Electronically Tuned Cp Ligands for
	Rhodium(III)-Catalyzed Carbon-Hydrogen Bond
	Functionalization 593
	Fedor Romanov-Michailidis, Erik J.T. Phipps, and Tomislav Rovis

20.1

Introduction 593

20.2	Quantitative Models for Steric and Electronic Parameterization of Cp Ligands on Rhodium(III) 594
20.3	Sterically Tuned Cp Ligands 598
20.3.1	Earlier Results 598
20.3.2	Synthesis of Isoquinolones, Pyridones, and Derivatives 599
20.3.3	Synthesis of Pyridines 607
20.3.4	Cyclopropanation and Carboamination Reactions 607
20.4	Electronically Tuned Cp Ligands 612
20.4.1	Synthesis of Pyridines and Derivatives 612
20.4.2	Tanaka's Ethoxycarbonyl-Substituted Cyclopentadienyl Ligand
	(Cp ^E) 615
20.5	Conclusion 626
	References 626
21	Chiral Cp Ligands for Rhodium(III)-Catalyzed Asymmetric
	Carbon–Hydrogen Bond Functionalization 629
	Christopher G. Newton and Nicolai Cramer
21.1	Introduction 629
21.2	Seminal Work 629
21.3	The Ligands 630
21.3.1	Development 630
21.3.2	Established Families 631
21.3.3	Complexation Methods 633
21.4	Applications 634
21.4.1	Introduction 634
21.4.2	Hydroxamate Directing Groups 634
21.4.3	Pyridyl Directing Groups 638
21.4.4	Hydroxy Directing Groups 639
21.4.5	Other Directing Groups 641
21.5	Conclusion 642
	References 642

Index 645