

Contents

Preface *xi*

1	The History/Development of Single Particle Nanocatalysis	1
1.1	History of Single Particle Nanocatalysis Based on Single Molecule Fluorescence Microscopy	2
1.2	History of Single Particle Nanocatalysis Based on (Localized) Surface Plasmon Resonance	3
1.3	History of Single Particle Nanocatalysis Based on Scanning Electrochemical Microscopy	4
1.4	History of Single Particle Nanocatalysis Based on Vibrational Spectroscopies	5
	References	6
2	Single Molecule Nanocatalysis Reveals Catalytic Kinetics and Thermodynamics of Individual Nanocatalysts	9
2.1	Single Molecule Enzymology	9
2.1.1	Single Molecule Michaelis–Menten Kinetics in the Absence of Dynamic Disorder	9
2.1.2	Single Molecule Michaelis–Menten Kinetics with Dynamic Disorder	13
2.1.3	Randomness Parameter	20
2.1.4	Single Molecule Michaelis–Menten Kinetics for Fluorogenic Reaction in the Absence of Dynamic Disorder	21
2.2	Physical Models for Kinetic and Dynamic Analysis of Single Molecule Nanocatalysts	23
2.2.1	Langmuir–Hinshelwood Mechanism for Noncompetitive Heterogeneous Catalysis	23
2.2.1.1	Langmuir–Hinshelwood Mechanism for Product Formation	24
2.2.1.2	Two-Pathway Model for Production Dissociation	27
2.2.1.3	Overall Turnover Rate	29
2.2.2	Langmuir–Hinshelwood Mechanism for Competitive Heterogeneous Catalysis	30
2.3	Comparison Between Michaelis–Menten Mechanism and Noncompetitive Langmuir–Hinshelwood Mechanism	31

2.4	Michaelis–Menten Mechanism Coupled with Multiple Product Dissociation Pathways	32
2.4.1	Product Dissociation Process	32
2.4.2	Product Formation Process	33
2.5	Application of Langmuir–Hinshelwood Mechanism to Oligomeric Enzymes	35
2.6	Applications of Competitive/Noncompetitive Langmuir–Hinshelwood Models in Single Molecule Nanocatalysis	35
2.6.1	Applications of Noncompetitive Langmuir–Hinshelwood Models in Single Molecule Nanocatalysis	35
2.6.1.1	Single Molecule Nanocatalysis on Single Au Nanoparticles	35
2.6.1.2	Single Molecule Photocatalysis on Single TiO ₂ Nanoparticles	38
2.6.2	Applications of Competitive Langmuir–Hinshelwood Models in Single Molecule Nanocatalysis	41
2.6.2.1	Single Pt Nanocatalyst Behaves Differently in Different Reactions	41
2.6.2.2	Single Molecule Nanocatalysis at Subparticle Level	42
2.7	Single Molecule Nanocatalysis Reveals the Catalytic Thermodynamics of Single Nanocatalysts	44
	Abbreviation	46
	References	46
3	Combination of Traditional SMFM with Other Techniques for Single Molecule/Particle Nanocatalysis	49
3.1	Introduction of SMFM-Based Single Particle Nanocatalysis Analysis Method	49
3.2	SMFM Combining with Electrochemical Techniques	49
3.3	SMFM Combining with AFM	57
3.4	Conclusion	60
	Abbreviations	60
	References	60
4	Optical Super-Resolution Imaging in Single Molecule Nanocatalysis	63
4.1	History and Principle of Different Optical Super-Resolution (SR) Techniques	63
4.1.1	History of Optical Super-Resolution (SR) Techniques	63
4.1.2	Principle of Optical Super-Resolution (SR) Imaging	65
4.1.2.1	Super-Resolution Imaging with Spatially Patterned Excitation	65
4.1.2.2	Localization Microscopy: Super-Resolution Imaging Based on Single Molecule Localization	66
4.2	Application of Super-Resolution Imaging in Single Particle Catalysis	68
4.2.1	Layered Double Hydroxide (LDH)	69
4.2.2	Zeolites	69
4.2.2.1	Super-Resolution Imaging on Zeolites	69
4.2.2.2	Depth Profiling with Super-Resolution Imaging on Zeolites	74

4.2.3	Metal Nanoparticles	76
4.2.4	Supported Metal Nanocatalysts	79
4.2.5	Semiconductors as Photo(electro)catalysts	80
4.2.5.1	Active Site/Facet Mapping	82
4.2.5.2	Photogenerated Charge Separation	82
4.2.5.3	Design a Photo(electro)catalyst	84
4.2.6	Electrocatalysts	86
4.2.7	Imaging the Chemical Reactions	87
4.2.7.1	Kinetic Studies of Single Molecule Fluorogenic Reactions	87
4.2.7.2	SR Imaging of the Single Molecule Reactions on Different Surfaces	89
4.2.8	Other Applications of SR Imaging Technique	91
4.3	Summary	92
	Abbreviations	92
	References	93

5	Scanning Electrochemical Microscopy (SECM) for Single Particle Nanocatalysis	107
5.1	Brief Review of Scanning Electrochemical Microscopy (SECM)	107
5.2	Principles of SECM	109
5.2.1	Preparation of Nanoelectrodes	111
5.2.1.1	Fabrication Method 1: Electron Beam Lithography	111
5.2.1.2	Fabrication Method 2: Glass-Coated Electrode	113
5.2.2	Operation Modes of SECM	113
5.2.2.1	Collection Mode	113
5.2.2.2	Feedback Mode	117
5.3	Preparation of Single Nanoparticle Samples for Electrocatalytic Studies	118
5.3.1	“Jump-to-contact” Method for Preparing Single Nanoparticles Based on Tip-Induced Deposition of Metal	119
5.3.2	Electrochemical Methods of Preparing and Characterizing Single-Metal NPs	120
5.3.2.1	Direct Electrodepositing of Single-Metal NPs on a Macroscopic Substrate	121
5.3.2.2	Mechanical Transfer of the Nanoparticle from the Tip	123
5.3.2.3	Anodization of Tip Material	124
5.3.2.4	Single-Nanoparticle Formation on Ultramicroscopic Substrate	124
5.3.3	Determining Electroactive Radii of the Substrate	125
5.4	Examples of Typical Experimental Data Analysis Process	127
5.4.1	Pt NPs/C UME/Proton Reduction	128
5.4.2	Water Oxidation on IrO_x NP	130
5.4.3	Hydrogen Evolution Reaction (HER) at the Pd NP	133
5.4.4	Screening of ORR Catalysts	137
5.5	Summary	141
	Abbreviations	141
	References	142

6	Surface Plasmon Resonance Spectroscopy for Single Particle Nanocatalysis/Reaction	145
6.1	Bulk, Surface, and Localized Surface (Nanoparticle) Plasmons	145
6.2	SPR on Single Particle Catalysis at Single Particle Level	146
6.2.1	Principle of SPR Sensing	146
6.2.2	Experimental Method of SPR on Single Particle Catalysis	149
6.2.3	Application: Electrocatalysis of Single Pt Nanoparticles Based on SPR	150
6.3	LSPR on Single Particle Catalysis/Reaction at Single Particle Level	150
6.3.1	Principle of LSPR Sensing	150
6.3.1.1	Electron Injection and Spillover	152
6.3.1.2	Plasmon Coupling	153
6.3.1.3	Plasmon Resonance Energy Transfer	153
6.3.2	Experimental Method of LSPR on Single Particle Catalysis	154
6.3.2.1	Dark-field Microscopy	154
6.3.2.2	Experimental Strategies	155
6.3.3	Application of LSPR Spectroscopy to Single Particle Catalysis/Reaction	156
6.3.3.1	Application 1: Direct Observation of the Changes of the Single Nanoparticle Itself	156
6.3.3.2	Application 2: Direct Observation of Surface Catalytic Reactions on Single Gold Nanoparticles by Single Particle LSPR Spectroscopy	159
6.3.3.3	Application 3: Indirect Observation of Catalytic Reactions by Single-Nanoparticle LSPR Spectroscopy	161
6.3.3.4	Application 4: Indirect Observation of Chemical Reactions by Plasmon Resonance Energy Transfer	165
6.3.3.5	Application 5: Observation of Electrochemical/Catalytic Reactions on Single Gold Nanoparticles by Single Particle LSPR Spectroscopy	166
	Abbreviations	174
	References	175
7	X-ray-Based Microscopy of Single Particle Nanocatalysis	181
7.1	History of X-ray Microscopy	181
7.1.1	History of the Setups for X-ray Absorption Fine Structure (XAFS)	182
7.1.2	Evolution of X-ray Source Based on Synchrotron Light Sources	185
7.2	Apparatus for Micrometer-Resolved XAFS Spectroscopy	186
7.2.1	Soft X-rays and Hard X-rays	187
7.2.2	Micropores	188
7.2.3	How the X-ray Beam is Shaped?	191
7.2.3.1	X-ray Beam Optimization: Energy Selection	192
7.2.3.2	X-ray Beam Optimization: Harmonic Rejection	194
7.3	Spatially Resolved X-ray Microprobe Methods	196
7.3.1	Full-Field Transmission X-ray Microscopy (TXM)	196
7.3.2	Zernike Phase Contrast X-ray Microscopy	197
7.3.3	Scanning Transmission X-ray Microscopy (STXM)	198

7.3.4	Photoemission Microscopes: PEEM, SPEM, and Nano-ARPES	198
7.3.5	Diffraction Microscopy	199
7.4	Applications of X-ray-Based Microscopes at Single-Nanoparticle Catalysis	199
7.5	Summary	204
	Abbreviations	204
	References	205
8	Vibrational Spectroscopy for Single Particle and Nanoscale Catalysis	207
8.1	Enhanced Raman Spectroscopy	207
8.1.1	Principles of Enhanced Raman Spectroscopy	208
8.1.1.1	Interaction Between Light and Metal Nanostructure	208
8.1.1.2	Interaction Between Light and Molecules	209
8.1.1.3	Interaction Between Metal Nanostructure and Molecules	211
8.1.1.4	Hot Spots	213
8.1.2	Reactions Related to Enhanced Raman Spectroscopy	216
8.1.2.1	Model Chemical Reactions	216
8.1.2.2	Plasmon-Assisted Catalysis	217
8.1.2.3	Electrochemical Reactions	219
8.1.3	Surface-Enhanced Raman Spectroscopy	220
8.1.3.1	Remote Excitation SERS (Re-SERS)	220
8.1.3.2	Instrumentation for Raman Scattering Detection	221
8.1.3.3	SERS Substrate and Applications	222
8.1.3.4	Application of SERS on Single Particle Catalysis/Electrochemistry	228
8.1.4	Tip-Enhanced Raman Scattering	232
8.1.4.1	Configuration of TERS	233
8.1.4.2	Application of TERS on Electrochemistry and Catalysis at Nanoscale or Single Particle Level	236
8.2	Enhanced Infrared Spectroscopy	244
8.2.1	Principles of SEIRAS	244
8.2.2	Application of SEIRAS on Single Particle Nanocatalysis	247
	Abbreviations	248
	References	249
9	Other Techniques for Single Particle Nanocatalysis/Electrochemistry	255
9.1	Photoluminescence Spectroscopy for Single Particle Nanocatalysis	255
9.1.1	Photoluminescence of Au Nanoparticle	255
9.1.2	Applications of PL Spectroscopy for Single Particle Catalysis	257
9.1.2.1	Revealing Plasmon-Enhanced Catalysis by Single Particle PL Spectroscopy	257
9.1.2.2	Direct Observation of Chemical Reactions by Single Particle PL Measurement	258

9.2	Nanoelectrodes and Ultra-microelectrodes for Single Particle Electrochemistry	260
9.2.1	Nanoelectrodes for Single Particle Electrocatalysis	261
9.2.2	Ultra-microelectrodes for Single Particle Electrochemistry	264
9.2.2.1	Stochastic Collision of Individual Nanoparticles with UME	264
9.2.2.2	Application of UME on Single-Nanoparticle Electrochemistry	267
9.3	Three-Dimensional Holographic Microscopy for Single Particle Electrochemistry	273
9.3.1	3D-Superlocalization of Nanoparticles by DHM	273
9.3.2	Application of DHM on Single Particle Electrochemistry	275
9.3.2.1	Deciphering the Transport Reaction Process of Single Ag Nanoparticles	276
9.3.2.2	Correlated DHM and UME to Reveal the Chemical Reactivity of Individual Nanoparticles	277
	Abbreviations	278
	References	278

Index	283
--------------	-----