

## Preface *xvii*

|          |                                                                                                                                  |           |
|----------|----------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>1</b> | <b>Application of Stimuli-Responsive and “Non-innocent” Ligands in Base Metal Catalysis</b>                                      | <b>1</b>  |
|          | <i>Andrei Chirila, Braja Gopal Das, Petrus F. Kuijpers, Vivek Sinha, and Bas de Bruin</i>                                        |           |
| 1.1      | Introduction                                                                                                                     | 1         |
| 1.2      | Stimuli-Responsive Ligands                                                                                                       | 2         |
| 1.2.1    | Redox-Responsive Ligands                                                                                                         | 3         |
| 1.2.2    | pH-Responsive Ligands                                                                                                            | 5         |
| 1.2.3    | Light-Responsive Ligands                                                                                                         | 7         |
| 1.3      | Redox-Active Ligands as Electron Reservoirs                                                                                      | 8         |
| 1.3.1    | Bis(imino)pyridine (BIP)                                                                                                         | 8         |
| 1.3.1.1  | Ethylene Polymerization with BIP                                                                                                 | 9         |
| 1.3.1.2  | Cycloaddition Reactions                                                                                                          | 10        |
| 1.3.1.3  | Hydrogenation and Hydro-addition Reactions                                                                                       | 12        |
| 1.3.2    | Other Ligands as Electron Reservoirs                                                                                             | 14        |
| 1.4      | Cooperative Ligands                                                                                                              | 15        |
| 1.4.1    | Cooperative Reactivity with Ligand Radicals                                                                                      | 16        |
| 1.4.1.1  | Galactose Oxidase (GoAse) and its Models                                                                                         | 16        |
| 1.4.1.2  | Alcohol Oxidation by Salen Complexes                                                                                             | 18        |
| 1.4.2    | Base Metal Cooperative Catalysis with Ligands Acting as an Internal Base                                                         | 18        |
| 1.4.2.1  | Fe-Pincer Complexes                                                                                                              | 19        |
| 1.4.2.2  | Ligands Containing a Pendant Base                                                                                                | 20        |
| 1.5      | Substrate Radicals in Catalysis                                                                                                  | 21        |
| 1.5.1    | Carbene Radicals                                                                                                                 | 22        |
| 1.5.2    | Nitrene Radicals                                                                                                                 | 25        |
| 1.6      | Summary and Conclusions                                                                                                          | 26        |
|          | References                                                                                                                       | 27        |
| <b>2</b> | <b>Computational Insights into Chemical Reactivity and Road to Catalyst Design: The Paradigm of CO<sub>2</sub> Hydrogenation</b> | <b>33</b> |
|          | <i>Bhaskar Mondal, Frank Neese, and Shengfa Ye</i>                                                                               |           |
| 2.1      | Introduction                                                                                                                     | 33        |

|          |                                                                                                                        |           |
|----------|------------------------------------------------------------------------------------------------------------------------|-----------|
| 2.1.1    | Chemical Reactions: Conceptual Thoughts                                                                                | 33        |
| 2.1.2    | Motivation Behind Studying CO <sub>2</sub> Hydrogenation                                                               | 35        |
| 2.1.3    | Challenges of CO <sub>2</sub> Reduction                                                                                | 35        |
| 2.1.4    | CO <sub>2</sub> Hydrogenation                                                                                          | 37        |
| 2.1.5    | Noble vs Non-noble Metal Catalysis                                                                                     | 38        |
| 2.1.6    | CO <sub>2</sub> Hydrogenation: Basic Mechanistic Considerations                                                        | 38        |
| 2.2      | Reaction Energetics and Governing Factor                                                                               | 39        |
| 2.3      | Newly Designed Catalysts and Their Reactivity                                                                          | 42        |
| 2.4      | Correlation Between Hydricity and Reactivity                                                                           | 43        |
| 2.5      | Concluding Remarks                                                                                                     | 45        |
|          | Acknowledgments                                                                                                        | 46        |
|          | References                                                                                                             | 47        |
| <b>3</b> | <b>Catalysis with Multinuclear Complexes</b>                                                                           | <b>49</b> |
|          | <i>Neal P. Mankad</i>                                                                                                  |           |
| 3.1      | Introduction                                                                                                           | 49        |
| 3.2      | Stoichiometric Reaction Pathways                                                                                       | 50        |
| 3.2.1    | Bimetallic Binding and Activation of Substrates                                                                        | 50        |
| 3.2.1.1  | Small-Molecule Activation                                                                                              | 51        |
| 3.2.1.2  | Alkyne Activation                                                                                                      | 52        |
| 3.2.2    | Bimetallic Analogs of Oxidative Addition and Reductive Elimination                                                     | 53        |
| 3.2.2.1  | E—H Addition and Elimination                                                                                           | 54        |
| 3.2.2.2  | C—X Activation and C—C Coupling                                                                                        | 56        |
| 3.2.2.3  | C=O Cleavage                                                                                                           | 57        |
| 3.3      | Application in Catalysis                                                                                               | 57        |
| 3.3.1    | Catalysis with Reactive Metal–Metal Bonds                                                                              | 58        |
| 3.3.1.1  | Bimetallic Alkyne Cycloadditions                                                                                       | 58        |
| 3.3.1.2  | Bimetallic Oxidative Addition/Reductive Elimination Cycling                                                            | 59        |
| 3.3.2    | Bifunctional and Tandem Catalysis without Metal–Metal Bonds                                                            | 59        |
| 3.3.2.1  | Cooperative Activation of Unsaturated Substrates                                                                       | 59        |
| 3.3.2.2  | Cooperative Processes with Bimetallic Oxidative Addition and/or Reductive Elimination                                  | 62        |
| 3.4      | Polynuclear Complexes                                                                                                  | 64        |
| 3.5      | Outlook                                                                                                                | 65        |
|          | Acknowledgments                                                                                                        | 66        |
|          | References                                                                                                             | 66        |
| <b>4</b> | <b>Copper-Catalyzed Hydrogenations and Aerobic N—N Bond Formations: Academic Developments and Industrial Relevance</b> | <b>69</b> |
|          | <i>Paul L. Alsters and Laurent Lefort</i>                                                                              |           |
| 4.1      | Introduction                                                                                                           | 69        |
| 4.2      | Cu-Promoted N—N Bond Formation                                                                                         | 70        |
| 4.2.1    | Noncyclization N—N or N=N Bond Formations                                                                              | 71        |

|         |                                                             |    |
|---------|-------------------------------------------------------------|----|
| 4.2.1.1 | N—N Single-Bond-Forming Reactions                           | 71 |
| 4.2.1.2 | N=N Double Bond-Forming Reactions                           | 72 |
| 4.2.2   | Cyclization N—N Bond Formations                             | 74 |
| 4.2.2.1 | Dehydrogenative Cyclizations                                | 77 |
| 4.2.2.2 | Eliminative Cyclizations                                    | 80 |
| 4.2.2.3 | Eliminative Dehydrogenative Cyclizations                    | 81 |
| 4.3     | Cu-Catalyzed Homogeneous Hydrogenation                      | 82 |
| 4.3.1   | Hydrogenation of CO <sub>2</sub> to Formate and Derivatives | 84 |
| 4.3.2   | Hydrogenation of Carbonyl Compounds                         | 86 |
| 4.3.3   | Hydrogenation of Olefins and Alkynes                        | 89 |
| 4.4     | Conclusions                                                 | 91 |
|         | References                                                  | 92 |

## 5 C=C Hydrogenations with Iron Group Metal Catalysts 97

*Tim N. Gieshoff and Axel J. von Wangelin*

|       |                  |     |
|-------|------------------|-----|
| 5.1   | Introduction     | 97  |
| 5.2   | Iron             | 99  |
| 5.2.1 | Introduction     | 99  |
| 5.2.2 | Pincer Complexes | 100 |
| 5.2.3 | Others           | 106 |
| 5.3   | Cobalt           | 107 |
| 5.3.1 | Introduction     | 107 |
| 5.3.2 | Pincer Complexes | 108 |
| 5.3.3 | Others           | 115 |
| 5.4   | Nickel           | 118 |
| 5.4.1 | Introduction     | 118 |
| 5.4.2 | Pincer Complexes | 119 |
| 5.4.3 | Others           | 121 |
| 5.5   | Conclusion       | 122 |
|       | Acknowledgments  | 123 |
|       | References       | 123 |

## 6 Base Metal-Catalyzed Addition Reactions Across C—C Multiple Bonds 127

*Rodrigo Ramírez-Contreras and Bill Morandi*

|         |                                                                                             |     |
|---------|---------------------------------------------------------------------------------------------|-----|
| 6.1     | Introduction                                                                                | 127 |
| 6.2     | Catalytic Addition to Alkenes Initiated Through Radical Mechanisms                          | 128 |
| 6.2.1   | Hydrogen Atom Transfer as a General Approach to Hydrofunctionalization of Unsaturated Bonds | 128 |
| 6.2.2   | Hydrazines and Azides via Hydrohydrazination and Hydroazidation of Olefins                  | 128 |
| 6.2.2.1 | Co- and Mn-Catalyzed Hydrohydrazination                                                     | 128 |
| 6.2.2.2 | Cobalt- and Manganese-Catalyzed Hydroazidation of Olefins                                   | 130 |
| 6.2.3   | Co-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide                                   | 133 |
| 6.2.4   | Co-Catalyzed Hydrochlorination of Olefins with Tosyl Chloride                               | 133 |

|       |                                                                                                                        |     |
|-------|------------------------------------------------------------------------------------------------------------------------|-----|
| 6.2.5 | Fe <sup>III</sup> /NaBH <sub>4</sub> -Mediated Additions of Unactivated Alkenes                                        | 134 |
| 6.2.6 | Co-Catalyzed Markovnikov Hydroalkoxylation of Unactivated Olefins                                                      | 135 |
| 6.2.7 | Fe-Catalyzed Hydromethylation of Unactivated Olefins                                                                   | 137 |
| 6.2.8 | Hydroamination of Olefins Using Nitroarenes to Obtain Anilines                                                         | 137 |
| 6.2.9 | Dual-Catalytic Markovnikov Hydroarylation of Alkenes                                                                   | 139 |
| 6.3   | Other Catalytic Additions to Unsaturated Bonds Proceeding Through Initial R <sup>·</sup> (R ≠ H) Attack                | 139 |
| 6.3.1 | Cu-Catalyzed Trifluoromethylation of Unactivated Alkenes                                                               | 139 |
| 6.3.2 | Mn-Catalyzed Aerobic Oxidative Hydroxyazidation of Alkenes                                                             | 139 |
| 6.3.3 | Fe-Catalyzed Aminohydroxylation of Alkenes                                                                             | 141 |
| 6.4   | Catalytic Addition to Alkenes Initiated Through Polar Mechanisms                                                       | 143 |
| 6.4.1 | Cu-Catalyzed Hydroamination of Alkenes and Alkynes                                                                     | 143 |
| 6.4.2 | Ni-Catalyzed, Lewis-acid-Assisted Carbocyanation of Alkynes                                                            | 147 |
| 6.4.3 | Ni-Catalyzed Transfer Hydrocyanation                                                                                   | 148 |
| 6.5   | Hydrosilylation Reactions                                                                                              | 150 |
| 6.5.1 | Fe-Catalyzed, Anti-Markovnikov Hydrosilylation of Alkenes with Tertiary Silanes and Hydrosiloxanes                     | 150 |
| 6.5.2 | Highly Chemoselective Co-Catalyzed Hydrosilylation of Functionalized Alkenes Using Tertiary Silanes and Hydrosiloxanes | 151 |
| 6.5.3 | Alkene Hydrosilylation Using Tertiary Silanes with $\alpha$ -Diimine Ni Catalysts                                      | 151 |
| 6.5.4 | Chemoselective Alkene Hydrosilylation Catalyzed by Ni Pincer Complexes                                                 | 154 |
| 6.5.5 | Fe- and Co-Catalyzed Regiodivergent Hydrosilylation of Alkenes                                                         | 155 |
| 6.5.6 | Co-Catalyzed Markovnikov Hydrosilylation of Terminal Alkynes and Hydroborylation of $\alpha$ -Vinylsilanes             | 155 |
| 6.5.7 | Fe and Co Pivalate Isocyanide-Ligated Catalyst Systems for Hydrosilylation of Alkenes with Hydrosiloxanes              | 157 |
| 6.6   | Conclusion                                                                                                             | 159 |
|       | References                                                                                                             | 160 |

## 7 Iron-Catalyzed Cyclopropanation of Alkenes by Carbene Transfer Reactions 163

*Daniela Intrieri, Daniela M. Carminati, and Emma Gallo*

|     |                                                                          |     |
|-----|--------------------------------------------------------------------------|-----|
| 7.1 | Introduction                                                             | 163 |
| 7.2 | Achiral Iron Porphyrin Catalysts                                         | 165 |
| 7.3 | Chiral Iron Porphyrin Catalysts                                          | 172 |
| 7.4 | Iron Phthalocyanines and Corroles                                        | 176 |
| 7.5 | Iron Catalysts with N or N,O Ligands                                     | 180 |
| 7.6 | The [Cp(CO) <sub>2</sub> Fe <sup>II</sup> (THF)]BF <sub>4</sub> Catalyst | 184 |

|          |                                                                                                                  |            |
|----------|------------------------------------------------------------------------------------------------------------------|------------|
| 7.7      | Conclusions                                                                                                      | 186        |
|          | References                                                                                                       | 187        |
| <b>8</b> | <b>Novel Substrates and Nucleophiles in Asymmetric Copper-Catalyzed Conjugate Addition Reactions</b>             | <b>191</b> |
|          | <i>Ravindra P. Jumde, Syuzanna R. Harutyunyan, and Adriaan J. Minnaard</i>                                       |            |
| 8.1      | Introduction                                                                                                     | 191        |
| 8.2      | Catalytic Asymmetric Conjugate Additions to $\alpha$ -Substituted $\alpha,\beta$ -Unsaturated Carbonyl Compounds | 192        |
| 8.3      | Catalytic Asymmetric Conjugate Additions to Alkenyl-heteroarenes                                                 | 196        |
| 8.3.1    | A Brief Overview of Asymmetric Nucleophilic Conjugate Additions to Alkenyl-heteroarenes                          | 197        |
| 8.3.2    | Copper-Catalyzed Asymmetric Nucleophilic Conjugate Additions to Alkenyl-heteroarenes                             | 198        |
| 8.4      | Conclusion                                                                                                       | 205        |
|          | References                                                                                                       | 207        |
| <b>9</b> | <b>Asymmetric Reduction of Polar Double Bonds</b>                                                                | <b>209</b> |
|          | <i>Raphael Bigler, Lorena De Luca, Raffael Huber, and Antonio Mezzetti</i>                                       |            |
| 9.1      | Introduction                                                                                                     | 209        |
| 9.1.1    | Catalytic Approaches for Polar Double Bond Reduction                                                             | 209        |
| 9.1.2    | The Role of Hydride Complexes                                                                                    | 210        |
| 9.1.3    | Ligand Choice and Catalyst Stability                                                                             | 211        |
| 9.2      | Manganese                                                                                                        | 211        |
| 9.3      | Iron                                                                                                             | 212        |
| 9.3.1    | Iron Catalysts in Asymmetric Transfer Hydrogenation (ATH)                                                        | 213        |
| 9.3.2    | Iron Catalysts in Asymmetric Direct ( $H_2$ ) Hydrogenation (AH)                                                 | 218        |
| 9.3.3    | Iron Catalysts in Asymmetric Hydrosilylation (AHS)                                                               | 220        |
| 9.4      | Cobalt                                                                                                           | 223        |
| 9.4.1    | Cobalt Catalysts in the AH of Ketones                                                                            | 223        |
| 9.4.2    | Cobalt Catalysts in the ATH of Ketones                                                                           | 224        |
| 9.4.3    | Cobalt Catalysts in Asymmetric Hydrosilylation                                                                   | 225        |
| 9.4.4    | Asymmetric Borohydride Reduction and Hydroboration                                                               | 226        |
| 9.5      | Nickel                                                                                                           | 228        |
| 9.5.1    | Nickel Catalysts in Asymmetric $H_2$ Hydrogenation                                                               | 228        |
| 9.5.2    | Nickel ATH Catalysts                                                                                             | 228        |
| 9.5.3    | Nickel AHS Catalysts                                                                                             | 229        |
| 9.5.4    | Nickel-Catalyzed Asymmetric Borohydride Reduction                                                                | 230        |
| 9.5.5    | Ni-Catalyzed Asymmetric Hydroboration of $\alpha,\beta$ -Unsaturated Ketones                                     | 230        |
| 9.6      | Copper                                                                                                           | 231        |
| 9.6.1    | Copper-Catalyzed AH                                                                                              | 231        |
| 9.6.2    | Copper-Catalyzed ATH of $\alpha$ -Ketoesters                                                                     | 232        |
| 9.6.3    | Copper-Catalyzed AHS of Ketones and Imines                                                                       | 232        |
| 9.7      | Conclusion                                                                                                       | 235        |
|          | References                                                                                                       | 235        |

|        |                                                                                                                                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10     | <b>Iron-, Cobalt-, and Manganese-Catalyzed Hydrosilylation of Carbonyl Compounds and Carbon Dioxide</b> 241<br><i>Christophe Darcel, Jean-Baptiste Sortais, Duo Wei, and Antoine Bruneau-Voisine</i> |
| 10.1   | Introduction 241                                                                                                                                                                                     |
| 10.2   | Hydrosilylation of Aldehydes and Ketones 241                                                                                                                                                         |
| 10.2.1 | Iron-Catalyzed Hydrosilylation 242                                                                                                                                                                   |
| 10.2.2 | Cobalt-Catalyzed Hydrosilylation 247                                                                                                                                                                 |
| 10.2.3 | Manganese-Catalyzed Hydrosilylation 248                                                                                                                                                              |
| 10.3   | Reduction of Imines and Reductive Amination of Carbonyl Compounds 251                                                                                                                                |
| 10.4   | Reduction of Carboxylic Acid Derivatives 252                                                                                                                                                         |
| 10.4.1 | Carboxamides and Ureas 252                                                                                                                                                                           |
| 10.4.2 | Carboxylic Esters 254                                                                                                                                                                                |
| 10.4.3 | Carboxylic Acids 257                                                                                                                                                                                 |
| 10.5   | Hydroelementation of Carbon Dioxide 258                                                                                                                                                              |
| 10.5.1 | Hydrosilylation of Carbon Dioxide 258                                                                                                                                                                |
| 10.5.2 | Hydroboration of Carbon Dioxide 259                                                                                                                                                                  |
| 10.6   | Conclusion 260                                                                                                                                                                                       |
|        | References 261                                                                                                                                                                                       |
| 11     | <b>Reactive Intermediates and Mechanism in Iron-Catalyzed Cross-coupling</b> 265<br><i>Jared L. Kneebone, Jeffrey D. Sears, and Michael L. Neidig</i>                                                |
| 11.1   | Introduction 265                                                                                                                                                                                     |
| 11.2   | Cross-coupling Catalyzed by Simple Iron Salts 266                                                                                                                                                    |
| 11.2.1 | Methods Overview 266                                                                                                                                                                                 |
| 11.2.2 | Mechanistic Investigations 267                                                                                                                                                                       |
| 11.3   | TMEDA in Iron-Catalyzed Cross-coupling 273                                                                                                                                                           |
| 11.3.1 | Methods Overview 273                                                                                                                                                                                 |
| 11.3.2 | Mechanistic Investigations 275                                                                                                                                                                       |
| 11.4   | NHCs in Iron-Catalyzed Cross-coupling 276                                                                                                                                                            |
| 11.4.1 | Methods Overview 276                                                                                                                                                                                 |
| 11.4.2 | Mechanistic Investigations 279                                                                                                                                                                       |
| 11.5   | Phosphines in Iron-Catalyzed Cross-coupling 283                                                                                                                                                      |
| 11.5.1 | Methods Overview 283                                                                                                                                                                                 |
| 11.5.2 | Mechanistic Investigations 285                                                                                                                                                                       |
| 11.6   | Future Outlook 291                                                                                                                                                                                   |
|        | Acknowledgments 291                                                                                                                                                                                  |
|        | References 291                                                                                                                                                                                       |
| 12     | <b>Recent Advances in Cobalt-Catalyzed Cross-coupling Reactions</b> 297<br><i>Oriol Planas, Christopher J. Whiteoak, and Xavi Ribas</i>                                                              |
| 12.1   | Introduction 297                                                                                                                                                                                     |
| 12.2   | Cobalt-Catalyzed C—C Couplings Through a C—H Activation Approach 299                                                                                                                                 |

|           |                                                                                                         |            |
|-----------|---------------------------------------------------------------------------------------------------------|------------|
| 12.2.1    | Low-Valent Cobalt Catalysis                                                                             | 299        |
| 12.2.2    | High-Valent Cobalt Catalysis                                                                            | 302        |
| 12.3      | Cobalt-Catalyzed C—C Couplings Using a Preactivated Substrate Approach (Aryl Halides and Pseudohalides) | 308        |
| 12.3.1    | Aryl or Alkenyl Halides, C(sp <sup>2</sup> )—X                                                          | 308        |
| 12.3.2    | Alkyl Halides, C(sp <sup>3</sup> )—X                                                                    | 309        |
| 12.3.3    | Alkynyl Halides, C(sp)—X                                                                                | 311        |
| 12.3.4    | Aryl Halides Without Organomagnesium                                                                    | 311        |
| 12.4      | Cobalt-Catalyzed C—X Couplings Using C—H Activation Approaches                                          | 312        |
| 12.4.1    | C—N Bond Formation                                                                                      | 313        |
| 12.4.2    | C—O and C—S Bond Formation                                                                              | 317        |
| 12.4.3    | C—X Bond Formation (X = Cl, Br, I, and CN)                                                              | 318        |
| 12.5      | Cobalt-Catalyzed C—X Couplings Using a Preactivated Substrate Approach (Aryl Halides and Pseudohalides) | 320        |
| 12.5.1    | C(sp <sup>2</sup> )—S Coupling                                                                          | 320        |
| 12.5.2    | C(sp <sup>2</sup> )—N Coupling                                                                          | 321        |
| 12.5.3    | C(sp <sup>2</sup> )—O Coupling                                                                          | 322        |
| 12.6      | Miscellaneous                                                                                           | 322        |
| 12.7      | Conclusions and Future Prospects                                                                        | 323        |
|           | Acknowledgments                                                                                         | 323        |
|           | References                                                                                              | 324        |
| <b>13</b> | <b>Trifluoromethylation and Related Reactions</b>                                                       | <b>329</b> |
|           | <i>Jérémie Jacquet, Louis Fensterbank, and Marine Desage-El Murr</i>                                    |            |
| 13.1      | Trifluoromethylation Reactions                                                                          | 329        |
| 13.1.1    | Copper(I) Salts with Nucleophilic Trifluoromethyl Sources                                               | 329        |
| 13.1.1.1  | Reactions with Electrophiles                                                                            | 330        |
| 13.1.1.2  | Reactions with Nucleophiles: Oxidative Coupling                                                         | 331        |
| 13.1.2    | Generation of CF <sub>3</sub> • Radicals Using Langlois' Reagent                                        | 332        |
| 13.1.3    | Copper and Electrophilic CF <sub>3</sub> <sup>+</sup> Sources                                           | 333        |
| 13.2      | Trifluoromethylthiolation Reactions                                                                     | 341        |
| 13.2.1    | Nucleophilic Trifluoromethylthiolation                                                                  | 342        |
| 13.2.1.1  | Copper-Catalyzed Nucleophilic Trifluoromethylthiolation                                                 | 342        |
| 13.2.1.2  | Nickel-Catalyzed Nucleophilic Trifluoromethylthiolation                                                 | 344        |
| 13.2.2    | Electrophilic Trifluoromethylthiolation                                                                 | 345        |
| 13.3      | Perfluoroalkylation Reactions                                                                           | 348        |
| 13.4      | Conclusion                                                                                              | 350        |
|           | References                                                                                              | 350        |
| <b>14</b> | <b>Catalytic Oxygenation of C=C and C—H Bonds</b>                                                       | <b>355</b> |
|           | <i>Pradip Ghosh, Marc-Etienne Moret, and Robert J. M. Klein Gebbink</i>                                 |            |
| 14.1      | Introduction                                                                                            | 355        |
| 14.2      | Oxygenation of C=C Bonds                                                                                | 356        |
| 14.2.1    | Manganese Catalysts                                                                                     | 356        |
| 14.2.2    | Iron Catalysts                                                                                          | 363        |
| 14.2.3    | Cobalt, Nickel, and Copper Catalysts                                                                    | 372        |

|           |                                                                                                              |            |
|-----------|--------------------------------------------------------------------------------------------------------------|------------|
| 14.3      | Oxygenation of C—H Bonds                                                                                     | 376        |
| 14.3.1    | Manganese Catalysts                                                                                          | 376        |
| 14.3.2    | Iron Catalysts                                                                                               | 377        |
| 14.3.3    | Cobalt Catalysts                                                                                             | 380        |
| 14.3.4    | Nickel Catalysts                                                                                             | 381        |
| 14.3.5    | Copper Catalysts                                                                                             | 383        |
| 14.4      | Conclusions and Outlook                                                                                      | 384        |
|           | Acknowledgment                                                                                               | 385        |
|           | References                                                                                                   | 385        |
| <b>15</b> | <b>Organometallic Chelation-Assisted C—H Functionalization</b>                                               | <b>391</b> |
|           | <i>Parthasarathy Gandeepan and Lutz Ackermann</i>                                                            |            |
| 15.1      | Introduction                                                                                                 | 391        |
| 15.2      | C—C Bond Formation via C—H Activation                                                                        | 392        |
| 15.2.1    | Reaction with Unsaturated Substrates                                                                         | 392        |
| 15.2.1.1  | Addition to C—C Multiple Bonds                                                                               | 392        |
| 15.2.1.2  | Addition to C—Heteroatom Multiple Bonds                                                                      | 393        |
| 15.2.1.3  | Oxidative C—H Olefination                                                                                    | 396        |
| 15.2.1.4  | C—H Allylation                                                                                               | 397        |
| 15.2.1.5  | Oxidative C—H Functionalization and Annulations                                                              | 397        |
| 15.2.1.6  | C—H Alkynylations                                                                                            | 403        |
| 15.2.2    | C—H Cyanation                                                                                                | 404        |
| 15.2.3    | C—H Arylation                                                                                                | 404        |
| 15.2.4    | C—H Alkylation                                                                                               | 407        |
| 15.3      | C—Heteroatom Formation via C—H Activation                                                                    | 409        |
| 15.3.1    | C—N Formation via C—H Activation                                                                             | 409        |
| 15.3.1.1  | C—H Amination with Unactivated Amines                                                                        | 409        |
| 15.3.1.2  | C—H Amination with Activated Amine Sources                                                                   | 409        |
| 15.3.2    | C—O Formation via C—H Activation                                                                             | 412        |
| 15.3.3    | C—Halogen Formation via C—H Activation                                                                       | 412        |
| 15.3.4    | C—Chalcogen Formation via C—H Activation                                                                     | 414        |
| 15.4      | Conclusions                                                                                                  | 415        |
|           | Acknowledgments                                                                                              | 415        |
|           | References                                                                                                   | 415        |
| <b>16</b> | <b>Catalytic Water Oxidation: Water Oxidation to O<sub>2</sub> Mediated by 3d Transition Metal Complexes</b> | <b>425</b> |
|           | <i>Zoel Codolá, Julio Lloret-Fillol, and Miquel Costas</i>                                                   |            |
| 16.1      | Water Oxidation – From Insights into Fundamental Chemical Concepts to Future Solar Fuels                     | 425        |
| 16.1.1    | The Oxygen-Evolving Complex. A Well-Defined Tetramanganese Calcium Cluster                                   | 425        |
| 16.1.2    | Synthetic Models for the Natural Water Oxidation Reaction                                                    | 428        |
| 16.1.3    | Oxidants in Water Oxidation Reactions                                                                        | 428        |

|          |                                                                  |     |
|----------|------------------------------------------------------------------|-----|
| 16.2     | Model Well-Defined Water Oxidation Catalysts                     | 430 |
| 16.2.1   | Manganese Water Oxidation Catalysts                              | 430 |
| 16.2.1.1 | Bioinspired $Mn_4O_4$ Models                                     | 430 |
| 16.2.1.2 | Biomimetic Models Including a Lewis Acid                         | 432 |
| 16.2.1.3 | Catalytic Water Oxidation with Manganese Coordination Complexes  | 433 |
| 16.2.2   | Water Oxidation with Molecular Iron Catalysts                    | 435 |
| 16.2.2.1 | Iron Catalysts with Tetra-Anionic Tetra-Amido Macroyclic Ligands | 436 |
| 16.2.2.2 | Mononuclear Complexes with Monoanionic Polyamine Ligands         | 437 |
| 16.2.2.3 | Iron Catalysts with Neutral Ligands                              | 437 |
| 16.2.2.4 | Water Oxidation by a Multi-iron Catalyst                         | 440 |
| 16.2.3   | Cobalt Water Oxidation Catalysts                                 | 440 |
| 16.2.4   | Nickel-Based Water Oxidation Catalysts                           | 443 |
| 16.2.5   | Copper-Based Water Oxidation Catalysts                           | 445 |
| 16.3     | Conclusion and Outlook                                           | 446 |
|          | References                                                       | 448 |

|        |                                                                                                  |     |
|--------|--------------------------------------------------------------------------------------------------|-----|
| 17     | <b>Base-Metal-Catalyzed Hydrogen Generation from Carbon- and Boron Nitrogen-Based Substrates</b> | 453 |
|        | <i>Elisabetta Alberico, Lydia K. Vogt, Nils Rockstroh, and Henrik Junge</i>                      |     |
| 17.1   | Introduction                                                                                     | 453 |
| 17.1.1 | State of the Art of Hydrogen Generation from Carbon- and Boron Nitrogen-Based Substrates         | 453 |
| 17.1.2 | Development of Base Metal Catalysts for Catalytic Hydrogen Generation                            | 458 |
| 17.2   | Hydrogen Generation from Formic Acid                                                             | 460 |
| 17.2.1 | Iron                                                                                             | 461 |
| 17.2.2 | Nickel                                                                                           | 466 |
| 17.2.3 | Aluminum                                                                                         | 467 |
| 17.2.4 | Miscellaneous                                                                                    | 467 |
| 17.3   | Hydrogen Generation from Alcohols                                                                | 469 |
| 17.3.1 | Hydrogen Generation with Respect to Energetic Application                                        | 469 |
| 17.3.2 | Hydrogen Generation Coupled with the Synthesis of Organic Compounds                              | 470 |
| 17.4   | Hydrogen Storage in Liquid Organic Hydrogen Carriers                                             | 473 |
| 17.5   | Dehydrogenation of Ammonia Borane and Amine Boranes                                              | 474 |
| 17.5.1 | Overview on Conditions for $H_2$ Liberation from Ammonia Borane and Amine Boranes                | 474 |
| 17.5.2 | Non-noble Metal-Catalyzed Dehydrogenation of Ammonia Borane and Amine Boranes                    | 476 |
| 17.6   | Conclusion                                                                                       | 480 |
|        | References                                                                                       | 481 |

|           |                                                                                                         |            |
|-----------|---------------------------------------------------------------------------------------------------------|------------|
| <b>18</b> | <b>Molecular Catalysts for Proton Reduction Based on Non-noble Metals</b>                               | <b>489</b> |
|           | <i>Catherine Elleouet, François Y. Pétillon, and Philippe Schollhammer</i>                              |            |
| 18.1      | Introduction                                                                                            | 489        |
| 18.2      | Iron and Nickel Catalysts                                                                               | 489        |
| 18.2.1    | Bioinspired Di-iron Molecules                                                                           | 490        |
| 18.2.2    | Mono- and Poly-iron Complexes                                                                           | 496        |
| 18.2.3    | Bioinspired [NiFe] Complexes and [NiMn] Analogs                                                         | 501        |
| 18.2.4    | Other Nickel-Based Catalysts                                                                            | 506        |
| 18.3      | Other Non-noble Metal-Based Catalysts: Co, Mn, Cu, Mo, and W                                            | 508        |
| 18.3.1    | Cobalt                                                                                                  | 508        |
| 18.3.2    | Manganese                                                                                               | 512        |
| 18.3.3    | Copper                                                                                                  | 514        |
| 18.3.4    | Group 6 Metals (Mo, W)                                                                                  | 514        |
| 18.4      | Conclusion                                                                                              | 518        |
|           | References                                                                                              | 518        |
| <b>19</b> | <b>Nonreductive Reactions of CO<sub>2</sub> Mediated by Cobalt Catalysts: Cyclic and Polycarbonates</b> | <b>529</b> |
|           | <i>Thomas A. Zevaco and Arjan W. Kleij</i>                                                              |            |
| 19.1      | Introduction                                                                                            | 529        |
| 19.2      | Cocatalysts for CO <sub>2</sub> /Epoxide Couplings: Salen-Based Systems                                 | 530        |
| 19.3      | Co-Porphyrins as Catalysts for Epoxide/CO <sub>2</sub> Coupling                                         | 537        |
| 19.4      | Cocatalysts Based on Other N <sub>4</sub> -Ligated and Related Systems                                  | 540        |
| 19.5      | Aminophenoxy-Based Co Complexes                                                                         | 542        |
| 19.6      | Conclusion and Outlook                                                                                  | 544        |
|           | Acknowledgments                                                                                         | 545        |
|           | References                                                                                              | 545        |
| <b>20</b> | <b>Dinitrogen Reduction</b>                                                                             | <b>549</b> |
|           | <i>Fenna F. van de Watering and Wojciech I. Dzik</i>                                                    |            |
| 20.1      | Introduction                                                                                            | 549        |
| 20.2      | Activation of N <sub>2</sub>                                                                            | 550        |
| 20.3      | Reduction of N <sub>2</sub> to Ammonia                                                                  | 551        |
| 20.3.1    | Haber–Bosch-Inspired Systems                                                                            | 551        |
| 20.3.2    | Nitrogenase-Inspired Systems                                                                            | 555        |
| 20.3.2.1  | Early Mechanistic Studies on N <sub>2</sub> Reduction by Metal Complexes                                | 556        |
| 20.3.2.2  | Iron–Sulfur Systems                                                                                     | 557        |
| 20.3.3    | Catalytic Ammonia Formation                                                                             | 559        |
| 20.3.3.1  | Tripodal Systems                                                                                        | 560        |
| 20.3.3.2  | Iron and Cobalt PNP Systems                                                                             | 566        |
| 20.3.3.3  | The Cyclic Aminocarbene Iron System                                                                     | 567        |
| 20.3.3.4  | The Diphosphine Iron System                                                                             | 568        |
| 20.4      | Reduction of N <sub>2</sub> to Silylamines                                                              | 569        |
| 20.4.1    | Iron                                                                                                    | 570        |

|        |                         |            |
|--------|-------------------------|------------|
| 20.4.2 | Cobalt                  | 572        |
| 20.5   | Conclusions and Outlook | 575        |
|        | Acknowledgments         | 576        |
|        | References              | 576        |
|        | <b>Index</b>            | <b>583</b> |