Contents

Preface — V

1	Introduction —— 1
1.1	Wave equation models for some physical phenomena —— 2
1.1.1	Waves on a string with fixed ends —— 2
1.1.2	Elastic waves in a rod —— 3
1.1.3	Waves on a membrane —— 3
1.1.4	The acoustic model for seismic waves —— 4
1.1.5	Sound waves in liquids and gases —— 4
1.1.6	Waves in blood vessels —— 5
1.1.7	Electromagnetic waves —— 6
1.2	Basic helpful knowledge —— 7
1.2.1	Necessary contractions in C_0 -semigroup approach —— 7
1.2.2	Useful inequalities for decay rate analysis —— 9
1.2.3	Useful inequalities for compactly supported initial data —— 18
1.2.4	Results related to the weighted weak spaces —— 22
1.2.5	Results on the Fourier transform —— 25
2	Semilinear dissipative wave equations in \mathbb{R}^n —— 29
2.1	Property solutions with compactly supported initial data —— 29
2.1.1	Wave equation with frictional damping —— 29
2.1.2	Semilinear dissipative wave equation —— 30
2.2	Noncompactly supported initial data —— 37
3	Viscoelastic wave equation in \mathbb{R}^n —— 48
3.1	Viscoelastic evolution equation —— 48
3.1.1	Stability of solution —— 50
3.2	Nonlinear damping wave equation: finite speed of propagation
	principle —— 59
3.2.1	Global nonexistence —— 60
4	Nonlinear viscoelastic wave equations in weighted spaces —— 71
4.1	Viscoelastic wave equation with nonlinear source — 71
4.1.1	Existence of solution —— 71
4.1.2	Behavior of solution at ∞ — 77
4.2	Viscoelastic wave equations with strong damping in \mathbb{R}^n —— 88
4.2.1	Well-posedness result for the nonlinear case —— 89
4.2.2	Decay rate for linear cases —— 98

5	Wave equation of Kirchhoff type with density —— 103
5.1	Damped wave equation of Kirchhoff type —— 103
5.2	Wave equation of Kirchhoff type in viscoelasticity —— 112
6	Wave equation with logarithmic nonlinearities in Kirchhoff type —— 130
6.1	Global existence in time —— 131
6.2	General decay estimates —— 134
7	Petrowsky-Petrowsky system in \mathbb{R}^n —— 147
7.1	Lack of exponential stability —— 151
7.2	Polynomial stability —— 153
8	System of three wave equations —— 161
8.1	System of three wave equations with infinite memories —— 161
8.1.1	Polynomial stability —— 169
8.2	Three nonlinear wave equations depending on the relaxation functions —— 178
8.2.1	Local and global existence —— 181
8.2.2	Decay of solution —— 190
8.3	Systems of longitudinal <i>m</i> -nonlinear wave equations —— 193
8.3.1	Existence of solutions —— 195
8.3.2	Nonclassical decay of solution —— 202
9	Damped wave problems with memory term in Fourier spaces —— 207
9.1	1D-nonlinear wave equations with more regularity —— 207
9.2	Damped wave equation with weak-memory —— 210
9.2.1	Solution decays time asymptotically to zero —— 212
9.3	Coupled system of wave equations — 219
9.3.1	Decay rate of solution —— 220
10	Degenerate evolution equations in \mathbb{R}^n —— 230
10.1	Wave equation with structural δ -evolution —— 230
10.2	Plate equation with weak-memory —— 237
11	Structural damped wave equations with nonlinear memory terms —— 245
11.1	Existence of unique solution —— 245
11.1.1	Existence and uniqueness results —— 248
11.2	Global time nonexistence of solutions —— 263
11.2.1	Finite time blow-up result —— 266

Bibliography —— 287

Index —— 289