

Contents

Preface	<i>xvii</i>	
1	3D/4D Printing in Additive Manufacturing: Process Engineering and Novel Excipients	<i>1</i>
	<i>Christian Muehlenfeld and Simon A. Roberts</i>	
1.1	Introduction	<i>1</i>
1.2	The Process of 3D and 4D Printing Technology	<i>1</i>
1.3	3D/4D Printing for Biomedical Applications	<i>2</i>
1.4	Smart or Responsive Materials for 4D Biomedical Printing	<i>3</i>
1.5	Classification of 3D and 4D Printing Technologies	<i>7</i>
1.5.1	Fused Filament Fabrication (FFF) – Extrusion-Based Systems	<i>7</i>
1.5.2	Powder Bed Printing (PBP) – Droplet-Based Systems	<i>10</i>
1.5.3	Stereolithographic (SLA) Printing – Resin-Based Systems	<i>12</i>
1.5.4	Selective Laser Sintering (SLS) Printing – Laser-Based Systems	<i>15</i>
1.6	Conclusions and Perspectives	<i>17</i>
	References	<i>17</i>
2	3D and 4D Printing Technologies: Innovative Process Engineering and Smart Additive Manufacturing	<i>25</i>
	<i>Deck Tan, Ali Nokhodchi, and Mohammed Maniruzzaman</i>	
2.1	Introduction	<i>25</i>
2.2	Types of 3D Printing Technologies	<i>25</i>
2.2.1	Stereolithographic 3D Printing (SLA)	<i>25</i>
2.2.2	Powder-Based 3D Printing	<i>26</i>
2.2.3	Selective Laser Sintering (SLS)	<i>27</i>
2.2.4	Fused Deposition Modeling (FDM)	<i>28</i>
2.2.5	Semisolid Extrusion (EXT) 3D Printing	<i>29</i>
2.2.6	Thermal Inkjet Printing	<i>30</i>
2.3	FDM 3D Printing Technology	<i>31</i>
2.3.1	FDM 3D Printing Applications in Unit Dose Fabrications and Medical Implants	<i>33</i>
2.4	Hot Melt Extrusion Technique to Produce 3D Printing Polymeric Filaments	<i>34</i>

2.5	Smart Medical Implants Integrated with Sensors	35
2.5.1	Examples of Medical Implants with Sensors	36
2.6	4D Printing and Future Perspectives	38
2.6.1	4D Printing and Its Transition in Material Fabrication	38
2.6.2	Shape Memory or Stimuli-Responsive Mechanism of 4D Printing	39
2.6.3	Factors Affecting 4D Printing	40
2.6.3.1	Humidity-Responsive Materials	40
2.6.3.2	Temperatures	41
2.6.3.3	Electronic and Magnetic Stimuli	43
2.6.3.4	Light	45
2.6.4	Future Perspectives of 4D Printing	45
2.7	Regulatory Aspects	46
2.8	Conclusions	48
	References	48
3	3D Printing: A Case of ZipDose® Technology – World’s First 3D Printing Platform to Obtain FDA Approval for a Pharmaceutical Product	53
	<i>Thomas G. West and Thomas J. Bradbury</i>	
3.1	Introduction	53
3.2	Terminology	53
3.3	Historical Context for This Form of 3D Printing	54
3.4	ZipDose® Technology	56
3.5	3D Printing Machines and Pharmaceutical Process Design	60
3.5.1	Overview	60
3.5.2	Generalized Process in the Pharmaceutical Context	62
3.5.3	Exemplary 3DP Machine Designs	65
3.6	Development of SPRITAM®	70
3.6.1	Product Concept and Need	70
3.6.2	Regulatory Approach	71
3.6.3	Introduction of the Technology to FDA	72
3.6.4	Target Product Profile	72
3.6.5	Synopsis of Formulation and Clinical Development	73
3.7	Conclusion	76
	Acknowledgments	77
	References	77
4	Manufacturing of Biomaterials via a 3D Printing Platform	81
	<i>Patrick Thayer, Hector Martinez, and Erik Gatenholm</i>	
4.1	Additive Manufacturing and Bioprinting	81
4.2	Bioinks	83
4.2.1	Printability Control – Bioink Composition and Environmental Factors	83
4.2.2	Mechanisms for Filament Formation and Stability	85
4.3	3D Bioprinting Systems	87
4.3.1	Multifaceted Systems	88

4.3.2	Major Components	88
4.3.3	Pneumatic Printhead	89
4.3.4	Mechanical Displacement Printhead	89
4.3.5	Inkjet Printhead	91
4.3.6	Heated and Cooled Printheads	91
4.3.7	High-Temperature Extruder	92
4.3.8	Multimaterial Printhead	92
4.3.9	Heated and Cooled Printbed	94
4.3.10	Clean Chamber Technology	94
4.3.11	Video-Capture Printhead and Sensors	94
4.3.12	Integrated Intelligence	95
4.4	Applications	95
4.4.1	Internal Architecture	96
4.4.2	Integrated Vascular Networks and Microstructure Patterning	98
4.4.3	Personalized Medicine	99
4.5	Steps Necessary for Broader Application	101
	References	102
5	Bioscaffolding: A New Innovative Fabrication Process	113
	<i>Rania Abdelgaber, David Kilian, and Hendrik Fiehn</i>	
5.1	Introduction: From Bioscaffolding to Bioprinting	113
5.2	Scaffolding	115
5.2.1	Properties of Scaffolds	115
5.2.2	Bioprinters vs Common 3D Printers: Approaches for Extrusion of Polymers	116
5.2.3	Comparing Cell Seeding Techniques to 3D Bioprinting or Cell-Laden Hydrogels	117
5.2.3.1	From Printing to Bioprinting	117
5.2.3.2	Approaches of Stabilizing Printed Constructs	118
5.2.4	Examples/Applications of Cell-Seeded Scaffolds	119
5.2.5	Data Processing of 3D CAD Data for Bioscaffolds	119
5.3	Bioprinted Scaffolds	120
5.3.1	Bioinks	120
5.3.2	Tools for Multimaterial Printing	123
5.3.3	Multimaterial Scaffold	124
5.3.4	Core–Shell Scaffolds	126
5.3.5	Additional Technical Equipment	128
5.3.6	Piezoelectric Pipetting Technology	128
5.3.7	Usage of Piezoelectric Inkjet Technology with Bioscaffolds	130
5.4	Applications of Bioscaffolder and Bioprinting Systems	132
5.4.1	Individualized Implants and Tissue Constructs	132
5.4.2	Green Bioprinting	133
5.4.3	Challenges for Clinical Applications of Bioprinted Scaffolds in Tissue and Organ Engineering	134
5.4.4	4D Printing	135
5.5	Conclusion	137
	References	137

6	Potential of 3D Printing in Pharmaceutical Drug Delivery and Manufacturing	145
	<i>Maren K. Preis</i>	
6.1	Introduction	145
6.2	Pharmaceutical Drug Delivery	145
6.3	Conventional Manufacturing vs 3D Printing	146
6.4	Advanced Applications for Improved Drug Delivery	148
6.5	Instrumentations	148
6.6	Location of 3D Printing Manufacturing	149
6.6.1	Pharmaceutical Industry	149
6.6.2	At the Point of Care	150
6.6.3	Print-at-Home	150
6.7	Regulatory Aspects	151
6.8	Summary	151
	References	151
7	Emerging 3D Printing Technologies to Develop Novel Pharmaceutical Formulations	153
	<i>Christos I. Gioumouzouzis, Georgios K. Eleftheriadis, and Dimitrios G. Fatouros</i>	
7.1	Introduction	153
7.2	FDM 3D Printing	153
7.3	Pressure-Assisted Microsyringe	173
7.4	SLA 3D Printing	175
7.5	Powder Bed 3D Printing	175
7.6	SLS 3D Printing	178
7.7	3D Inkjet Printing	179
7.8	Conclusions	180
	References	180
8	Modulating Drug Release from 3D Printed Pharmaceutical Products	185
	<i>Julian Quodbach</i>	
8.1	Introduction	185
8.2	Pharmaceutically Used 3D Printing Processes and Techniques	186
8.2.1	Process Flow of 3D Printing Processes	186
8.2.2	Inkjet-Based Printing Technologies	187
8.2.3	Extrusion-Based Printing Techniques	187
8.2.4	Laser-Based Techniques	188
8.3	Modifying the Drug Release Profile from 3D Printed Dosage Forms	189
8.3.1	Approaches to Modify the Drug Release	189
8.3.2	Modifying the Drug Release by Formulation Variation	189
8.3.2.1	Fused Filament Fabrication	189
8.3.2.2	Other Printing Techniques	194

8.3.3	Manipulating the Dosage Form Geometry as a Means to Modify API Release	195
8.3.3.1	Fused Filament Fabrication	196
8.3.3.2	Drop-on-Drop Printing	197
8.3.4	Dissolution Control via Directed Diffusion and Compartmentalization	199
8.3.4.1	Drop-on-Powder Printing	199
8.3.4.2	Fused Filament Fabrication	202
8.3.4.3	Printing with Pressure-Assisted Microsyringes	205
8.4	Conclusion	206
	References	207
9	Novel Excipients and Materials Used in FDM 3D Printing of Pharmaceutical Dosage Forms	211
	<i>Ming Lu</i>	
9.1	Introduction	211
9.2	Biodegradable Polyester	219
9.2.1	Polylactic Acid (PLA)	219
9.2.2	Poly(ϵ -caprolactone) (PCL)	220
9.3	Polyvinyl Polymer	221
9.3.1	Polyvinyl Alcohol (PVA)	221
9.3.2	Ethylene Vinyl Acetate (EVA)	223
9.3.3	Polyvinylpyrrolidone (PVP)	224
9.3.4	Soluplus	225
9.4	Cellulosic Polymers	225
9.4.1	Hydroxypropyl Cellulose (HPC)	226
9.4.2	Hydroxypropyl Methylcellulose (HPMC)	227
9.4.3	Hydroxypropyl Methylcellulose Acetate Succinate (HPMCAS)	228
9.5	Polymethacrylate-Based Polymers	229
9.5.1	Eudragit RL/RS	230
9.5.2	Eudragit L100-55	231
9.5.3	Eudragit E 100	232
9.6	Conclusion	233
	References	234
10	Recent Advances of Novel Materials for 3D/4D Printing in Biomedical Applications	239
	<i>Jasim Ahmed</i>	
10.1	Introduction	239
10.2	Materials for 3DP	240
10.3	Rheology	241
10.4	Ceramics for 3D Printing	241
10.5	Polymers and Biopolymers for 3D Printing	243
10.5.1	Polylactide (PLA)	245
10.5.2	Poly(ϵ -caprolactone) (PCL)	245
10.5.3	Hyaluronic Acid	245

10.6	4D Printing	246
10.6.1	Bioprinting	246
10.6.2	Smart or Intelligent Materials	249
10.6.2.1	Thermal Stimuli-Induced Transformation	249
10.6.2.2	Hydrogel	253
10.7	3D and 4D Printed Bone Scaffolds with Novel Materials	255
10.7.1	3DP/4DP for Drug Delivery and Bioprinting	259
10.7.2	Polyurethane-Based Scaffolds for Tissue Engineering	260
10.8	Future and Prospects	263
	References	264
11	Personalized Polypills Produced by Fused Deposition Modeling	
	3D Printing	273
	<i>Sheng Qi, Jehad Nasereddin, and Fahad Alqahtani</i>	
11.1	Introduction	273
11.2	Polypharmacy and Polypills	275
11.2.1	Clinical Evidence and Current State of the Art	275
11.2.2	Future Personalization	276
11.3	FDM 3D Printing of Pharmaceutical Solid Dosage Forms	279
11.3.1	Basic Principle of FDM 3D Printing	279
11.3.2	Printing Parameter Control	281
11.3.3	Drug-Loading Methods	285
11.4	Key Challenges in the Development of FDM 3D Printed Personalized Polypills	287
11.4.1	Printable Pharmaceutical Materials	287
11.4.2	Printing Precision and Printer Redesign	288
11.4.3	Regulatory Barriers for Personalized Polypill Printing	290
11.5	Conclusions and Future Remarks	292
	References	292
12	3D Printing of Metallic Cellular Scaffolds for Bone	
	Implants	297
	<i>Xipeng Tan and Yu Jun Tan</i>	
12.1	Introduction	297
12.2	Metal 3D Printing Techniques for Bone Implants	299
12.2.1	Selective Laser Melting	301
12.2.2	Selective Electron Beam Melting	302
12.3	Biometals for Bone Implants	303
12.3.1	Nondegradable Biometals	304
12.3.2	Biodegradable Biometals	305
12.3.3	3D Printing of Biometals	306
12.3.3.1	Ti–6Al–4V ELI Alloy	306
12.3.3.2	CoCrMo Alloy	307
12.3.3.3	Stainless Steel 316L Alloy	307
12.3.3.4	NiTi Shape Memory Alloy	308
12.3.3.5	Tantalum	309
12.3.3.6	Mg and Its Alloy	309

12.4	Cellular Structure Design	310
12.4.1	Stochastic and Reticulated Cellular Design	311
12.4.2	Bend- and Stretch-Dominated Cellular Design	312
12.4.3	Scaffold Design Feasibility	312
12.5	Outlook	313
	References	314
13	3D and 4D Scaffold-Free Bioprinting	317
	<i>Chin Siang Ong, Pooja Yesanharao, and Narutoshi Hibino</i>	
13.1	Introduction	317
13.2	3D Scaffold-Free Bioprinting	318
13.2.1	Principles	318
13.2.2	Spheroid Optimization	318
13.2.3	3D Bioprinting	322
13.2.4	Decannulation and Functional Assessment	325
13.3	4D Bioprinting	326
13.3.1	Properties of “Smart” Materials	328
13.3.2	General Approaches	328
13.3.2.1	“Smart” Scaffolds	328
13.3.2.2	In Vivo Bioprinting	331
13.3.2.3	Hybrid Techniques	332
13.3.3	4D Bioprinting Technologies	332
13.3.4	Applications	334
13.3.5	Limitations and Future Directions	336
13.4	4D Scaffold-Free Bioprinting	337
13.5	Conclusion	338
	Acknowledgments	338
	References	338
14	4D Printing and Its Biomedical Applications	343
	<i>Saeed Akbari, Yuan-Fang Zhang, Dong Wang, and Qi Ge</i>	
14.1	Introduction	343
14.2	3D Printing Technologies with Potential for 4D Printing	344
14.2.1	Fused Deposition Modeling (FDM)	344
14.2.2	Direct Ink Writing (DIW)	345
14.2.3	Inkjet	347
14.2.4	Projection Stereolithography (pSLA)	348
14.3	Soft Active Materials for 4D Printing	349
14.3.1	Shape Memory Polymers	349
14.3.2	Hydrogels	354
14.3.3	Other SAMs	356
14.4	Biomedical Applications of 4D Printing	358
14.4.1	Temperature-Actuated 4D Printing	358
14.4.2	Humidity-Actuated 4D Printing	363
14.5	Conclusion and Outlook	365
	References	366

15	Current Trends and Challenges in Biofabrication Using Biomaterials and Nanomaterials: Future Perspectives for 3D/4D Bioprinting	373
	<i>Luciano P. Silva</i>	
15.1	Introduction	373
15.2	Biofabrication as a Multidisciplinary to Interdisciplinary Research Field	375
15.3	Biofabrication as a Multifaceted Approach	377
15.4	Biofabrication Beyond Biomedical Pharmaceutical Applications	377
15.5	The Diversity of Techniques Used in Biofabrication	378
15.6	Natural Resources as Sources of Biomaterials Useful for Biofabrication	380
15.7	Nanomaterials as Much More Than Just New Building Blocks for Biofabrication	382
15.8	3D Bioprinting as the New Gold Standard for Biofabrication	383
15.9	When 3D Bioprinting Is Not Sufficient for Bioconstruction: 4D Bioprinting	385
15.10	An Overview About Current Bottlenecks in Biofabrication	385
15.10.1	Does 3D Model Matter in Biofabrication?	386
15.10.2	Does Size and Time Matter in Biofabrication?	386
15.10.3	Do Choice Materials and Cells Matters in Biofabrication?	387
15.10.4	Does Maturation of the Bioconstructs Matter in Biofabrication?	387
15.10.5	Do Characterization Methods Matters in Biofabrication?	388
15.10.6	Does Economic and Social Impact Matter Biofabrication?	388
15.10.7	Does Ethical and Legal Issues Matter in Biofabrication?	389
15.11	Conclusion	390
	References	390
16	Orthopedic Implant Design and Analysis: Potential of 3D/4D Bioprinting	423
	<i>Chang Jiang Wang and Kevin B. Hazlehurst</i>	
16.1	Orthopedic Implant Design with 3D Printing	423
16.1.1	Bone Properties and Orthopedic Implants	423
16.1.2	3D Printing and Porous Implant Design	426
16.2	Analysis of 3D Printed Orthopedic Implants	428
16.2.1	Mechanical Properties of Porous Structures	429
16.2.2	Experimental Testing of 3D Printed Femoral Stems	433
16.2.3	Finite Element Analysis of Porous Stems with 3D Printing	435
16.3	3D Printed Orthopedic Implant Installation and Instrumentation	437
16.4	Orthopedic Implants Manufactured with 4D Printing	439
16.5	Summary	439
	References	440

17	Recent Innovations in Additive Manufacturing Across Industries: 3D Printed Products and FDA's Perspectives	443
	<i>Brett Rust, Olga Tsaponina, and Mohammed Maniruzzaman</i>	
17.1	Introduction	443
17.2	Current Widely Used Processes Across Industries	443
17.2.1	Fused Deposition Modeling (FDM)	443
17.2.2	Stereolithography (SLA) and Digital Light Processing (DLP)	444
17.2.3	Selective Laser Sintering (SLS)	445
17.3	Emerging 3D Printing Processes and Technologies	446
17.3.1	Continuous Liquid Interface Production (CLIP)	446
17.3.2	Multi Jet Fusion (MJF)	446
17.4	Industry Uses of Additive Manufacturing Technologies	447
17.5	Material and Processes for Medical and Motorsport Sectors	449
17.6	Medical Industry Usage and Materials Development	452
17.7	3D Printing of Medical Devices: FDA's Perspectives	455
17.7.1	FDA's Role in 3D Printing of Materials	455
17.7.2	Classifications of Medical Devices from FDA's Viewpoint	456
17.7.3	Medical Applications of 3D Printing and FDA's Expectations	457
17.7.4	Person-Specific Devices	458
17.7.5	Process of 3D Printing of Various Medical Devices	458
17.7.6	Materials Used in 3D Printed Devices Overall	459
17.7.7	Materials Used in Specific Application (Printed Dental Devices)	460
17.8	Conclusions	461
	References	461
	Index	463