Contents

Pr	Preface			V
I	Plan	e Powe	er Geometry	
1			O. Bruno or Geometry for One ODE and P ₁ -P ₆	3
	1.1	Statem	ent of the Problem	3
	1.2	Compu	station of Truncated Equations	4
	1.3	Comp	ntation of Expansions of Solutions to the Initial Equation (1.1) .	6
	1.4	Extens	ion of the Class of Solutions	7
	1.5	Solution	on of Truncated Equations	7
	1.6	Types	of Expansions	10
	1.7	Painle	vé Equations P_l	11
2			B. Batkhin and Natalia V. Batkhina Be Exact Solutions to Equation P_6	13
	2.1	Introdu	action	13
		2.1.1 2.1.2	Power Geometry Essentials	13 14
	2.2	Constr	ucting the Template of an Exact Solution	15
	2.3	Results 2.3.1 2.3.2 2.3.3	Known Exact Solutions to P_6 . Computed Solutions Generalization of Computed Solutions	17 17 17 20
3	Irina V. Goryuchkina			
	Cor	vergen	ce of a Formal Solution to an ODE	23
	3.1	The Go	eneral Case	23
	3.2	The Ca	ase of Rational Power Exponents	24

	3.3	The Case of Complex Power Exponents	25			
	3.4	On Solutions of the Sixth Painlevé Equation	25			
4	Irina	a V. Goryuchkina				
		imptotic Expansions and Forms of Solutions to P_6	27			
	4.1	Asymptotic Expansions near Singular Points of the Equation	27			
	4.2	Asymptotic Expansions near a Regular Point of the Equation	30			
	4.3	Boutroux-Type Elliptic Asymptotic Forms	30			
5	Anastasia V. Parusnikova					
	Asy	emptotic Expansions of Solutions to P ₅	33			
	5.1	Introduction	33			
	5.2	Asymptotic Expansions of Solutions near Infinity	35			
	5.3	Asymptotic Expansions of Solutions near Zero	35			
	5.4	Asymptotic Expansions of Solutions in the Neighborhood of the	27			
		Nonsingular Point of an Equation	37			
II	Sne	ace Power Geometry				
**	Spe	ace I ower dedicate				
6		Alexander D. Bruno Space Reven Coometry for one ODE and R. R. R.				
	_	ce Power Geometry for one ODE and P_1 – P_4 , P_6	41			
	6.1	Space Power Geometry	41			
	6.2	Asymptotic Forms of Solutions to Painlevé Equations P_1-P_4 , P_6	44			
		6.2.1 Equation P_1	44 45			
		6.2.3 Equation P_3 for $cd \neq 0$	46			
		6.2.4 Equation P_3 for $c = 0$ and $ad \neq 0$	47			
		6.2.5 Equation P_3 for $c = d = 0$ and $ab \neq 0 \dots$	48			
		6.2.6 Equation P_4	49			
		6.2.7 Equation P_6	50			
7	Alexander D. Bruno and Anastasia V. Parusnikova					
	Elli	ptic and Periodic Asymptotic Forms of Solutions to P_5	53			
	7.1	The Fifth Painlevé Equation	53			
	7.2	The case $\delta \neq 0$	54			
		7.2.1 General Properties of the P_5 Equation	54			
		7.2.2 The First Family of Elliptic Asymptotic Forms	55			

		7.2.3 7.2.4	The First Family of Periodic Asymptotic Forms The Second Family of Periodic Asymptotic Forms			
	7.3	The Ca 7.3.1 7.3.2 7.3.3 7.3.4	ase $\delta=0,\ \gamma\neq0$	59 59 60 62 63		
	7.4	The R	esults Obtained	64		
8			O. Bruno symptotic Expansions of Solutions to One ODE and P_1 – P_5	67		
	8.1	Introd	uction	67		
	8.2	Findin	g Asymptotic Forms	68		
	8.3	Comp	utation of Expansions (8.2)	69		
	8.4		on <i>P</i> ₁	71		
	8.5	Equati	on P ₂	73		
		8.5.1	Elliptic Asymptotic Forms, Face $\Gamma_3^{(2)}$	73		
		8.5.2	Periodic Asymptotic Forms, Face $\Gamma_4^{(2)}$	74		
	8.6	Equati 8.6.1 8.6.2 8.6.3	Case $cd \neq 0$ Case $c = 0$, $ad \neq 0$ Case $c = d = 0$, $ab \neq 0$	75 75 76 77		
	8.7	Equati	on P ₄	77		
		8.7.1	Elliptic Asymptotic Forms, Face $\Gamma_3^{(2)}$	78		
		8.7.2	Periodic Asymptotic Forms, Face $\Gamma_4^{(2)}$	78		
	8.8	Equati	on <i>P</i> ₅	79		
		8.8.1	Case $d \neq 0$, Elliptic Asymptotic Forms, Face $\Gamma_1^{(2)}$	79		
		8.8.2	Case $d \neq 0$, Periodic Asymptotic Forms, Face $\Gamma_2^{(2)}$	81		
		8.8.3	Case $d = 0, c \neq 0$, Elliptic Asymptotic Forms, Face $\tilde{\Gamma}_1^{(2)}$	81		
		8.8.4	Case $d = 0, c \neq 0$, Periodic Asymptotic Forms, Face $\tilde{\Gamma}_2^{(2)}$	81		
Ш	Iso	omond	romy Deformations			
9	Dmi	itry V. A	rtamonov			
			romic Deformations on Riemann Surfaces	85		
	9.1	Introd	uction	85		

X

	9.2 The Space of Parameters \tilde{T}	86
	9.3 The Description of Bundles with Connections on a Riemann Surface.	86
	9.4 Isomonodromic Deformations	87
	9.4 Isomonodronic Deformations	0/
10	Mikhail V. Babich	
	On Birational Darboux Coordinates of Isomonodromic Deformation Equations Phase Space	91
	Equations Phase Space	91
11	Yuliya P. Bibilo and Renat R. Gontsov	
	On the Malgrange Isomonodromic Deformations of Nonresonant	0.6
	Irregular Systems	95
	11.1 Introduction	95
	11.2 The Malgrange Isomonodromic Deformation of the Pair (E^0, ∇^0)	96
	11.3 Specificity of Meromorphic 2×2-Connections	98
12	Davide Guzzetti	
	Critical behavior of P_6 Functions from the Isomonodromy	
	Deformations Approach	101
	12.1 Introduction	101
	12.2 Behavior of $y(x)$	102
	12.3 Parameterization in Terms of Monodromy Data	104
13	Alexander Ya. Kazakov	
	Isomonodromy Deformation of the Heun Class Equation	107
	13.1 Introduction	107
	13.2 Gauge Transforms of Linear Differential Equations	108
	13.3 Gauge Transforms of the Hypergeometric Class Equations	111
	13.4 Gauge Transform of Heun Class Equations	112
	13.4.1 Formulation of the Problem	112
	13.4.2 Initial System of Equations and Equation <i>Heunc</i> 2	
	13.4.3 Parameters of the Transformed Equation	
	13.5 Conclusion	116
14	Vladimir P. Leksin	
	Isomonodromy Deformations and Hypergeometric-Type Systems	117
	14.1 Schlesinger Families of Fuchsian Systems	117
	14.2 Schlesinger Systems	118

	14.3 Upper-Triangular Schlesinger Systems	118
	14.4 Jordan–Pochhammer Systems	120
	14.5 The Basic Result	121
15		
	A Monodromy Problem Connected with P ₆	123
	15.1 Preliminaries I	
	15.2 Preliminaries II	124
	15.3 Main Result	125
	15.4 Example	126
16	ž	100
	Monodromy Evolving Deformations and Confluent Halphen's Systems	
	16.1 Introduction	
	16.2 Quadratic Systems and Nonassociative Algebras	
	16.3 Monodromy Evolving Deformations	133
	16.4 Halphen's Confluent Systems and Monodromy Evolving Deformations	135
17	Yoshikatsu Sasaki	
	On the Gauge Transformation of the Sixth Painlevé Equation	137
	17.1 Linearizations of the Sixth Painlevé Equation	
	17.1.1 LODE L_{VI}	
	17.1.3 LODE \tilde{L}_{VI}	
	17.1.4 Schlesinger System with Symmetric Gauge	
	17.1.5 Schlesinger System with Asymmetric Gauge	
	17.2 Schlesinger Transformation $\tilde{L}_{\rm VI} \to L_{\rm VI}$	143
18	, , , ,	
	Expansions for Solutions of the Schlesinger Equation at a Singular Point	151
	18.1 Introduction	151
	18.2 Schlesinger Equation and Isomonodromic Deformations	154
	18.3 Sketch of the Proof	

IV	Painlevé Property	
19	Pantelis A. Damianou Painleve Analysis of Lotka–Volterra Equations	161
20	Evgenii Gricuk and Valerii Gromak Painlevé Test and Briot-Bouquet Systems	165
21	Valerii Gromak Solutions of the Chazy System	167
22	Yasin Adjabi and Arezki Kessi Third-Order Ordinary Differential Equations with the Painlevé Test	171
	22.1 Introduction	171
	22.2 Simplified Equation	172
	22.3 Reduced Equations	174 181 182
23	Ivan P. Martynov, Vyacheslav A. Pronko and Tatsyana K. Andreeva Analytic Properties of Solutions of a Class of Third-Order Equations with an Irrational Right-Hand Side	185
V	Other Aspects	
24	Yurii V. Brezhnev The Sixth Painlevé Transcendent and Uniformizable Orbifolds	193
	24.1 Algebraic Solutions of \mathcal{P}_6 and Uniformization Theory	193
	24.2 On the General Solution to Equation (24.1)	194
	24.3 Calculus: Abelian Integrals and Affine (Analytic) Connections	195
25	Yurii V. Brezhnev On Uniformizable Representation for Abelian Integrals	199
	25.1 Introduction	199
	25.2 Schwarz Equation and Equations on Tori	200

	25.3 Holomorphic Elliptic Integrals and Hypergeometric Functions	201
	25.4 Abelian Integrals for Genus $g > 1$	
26	Rustem N. Garifullin Phase Shift for a Special Solution to the Korteweg-de Vries Equation in the Whitham Zone	209
	26.1 Introduction	209
	26.2 Evaluation of the Phase Shift	210
27	Valentina A. Golubeva Fuchsian Reduction of Differential Equations	213
	27.1 Fuchsian Reduction	
	27.1.1 Two Simple Examples	
	27.1.2 A More Complex Example	
	27.2 Two Applications: Astronomy and Relativity Theory 27.2.1 Astronomy. A Model of Gaseous Stars	217
	27.3 Fuchsian Systems for Feynman Integrals	
28	Kohei Iwaki The Voros Coefficient and the Parametric Stokes Phenomenon for the Second Painlevé Equation	225
	28.1 Introduction	225
	28.2 Connection Formula for the Parametric Stokes Phenomenon	226
	28.3 Derivation of the Connection Formulas Through the Analysis of the Voros Coefficient of (P_2)	228
29	Alexander Ya. Kazakov Integral Symmetry and the Deformed Hypergeometric Equation	231
30	Alexander Ya. Kazakov and Sergey Yu. Slavyanov Integral Symmetries for Confluent Heun Equations and Symmetries of Painlevé Equation P_5	237
31	Dmitry Korotkin and Peter Zograf From the Tau Function of Painleyé P. Faustion to Moduli Spaces	241

32	Yousuke Ohyama On particular Solutions of q-Painlevé Equations and q-Hypergeometric Equations	247
	32.1 Introduction	247
	32.2 <i>q</i> -Difference Equation of the Hypergeometric Type	247
	32.3 Hypergeometric Solutions of the <i>q</i> -Painlevé Equations	250
33	Sergey Yu. Slavyanov Derivation of Painlevé Equations by Antiquantization	25 3
34	Kouichi Takemura Integral Transformation of Heun's Equation and Apparent Singularity	257
	34.1 Heun's Equation and Integral Transformation	257
	34.2 Apparent Singularity and Integral Representation of Solutions	258
	34.3 Elliptical Representation of Heun's Equation and Integral Transformation	259
35	Vladimir Tsegel'nik Painlevé Analysis of Solutions to Some Nonlinear Differential Equations and their Systems Associated with Models of the Random-Matrix Type	263
	35.1 Introduction	263
	35.2 Model of the Random-Matrix Type with Airy Kernal	264
	35.3 System of Differential Equations Associated with the Dyson Process .	264
	35.4 Solutions of the Traveling-Wave Form of a Partial Differential	
	Equation	265
36	Pavlos Xenitidis Reductions on the Lattice and Painlevé Equations P2, P5, P6	267
	36.1 Introduction	267
	36.2 Symmetries of the ABS Equations	268
	36.3 Reduction on the Lattice and Discrete Painlevé Equations	269
	36.4 Continuous Symmetry Reductions	269
Co	mments	271