

Contents

Series Preface *xi*

Preface *xiii*

1 **Introductory Perspectives** *1*
A. Paul Alivisatos and Wojciech T. Osowiecki
References *4*

2 **The Joint Center for Energy Storage Research: A New Paradigm of Research, Development, and Demonstration** *7*
Thomas J. Carney, Devin S. Hodge, Lynn Trahey, and Fikile R. Brushett
2.1 Background and Motivation *7*
2.2 Lithium-ion Batteries: Current State of the Art *8*
2.3 Beyond Li-Ion Batteries *9*
2.4 JCESR Legacies and a New Paradigm for Research *9*
2.5 The JCESR Team *13*
2.6 JCESR Operational Tools *16*
2.7 Intellectual Property Management *17*
2.8 Communication Tools *17*
2.9 JCESR Change Decision Process *17*
2.10 Safety in JCESR *19*
2.11 Battery Technology Readiness Level *20*
2.12 JCESR Deliverables *21*
2.13 Scientific Tools in JCESR *22*
2.14 Techno-economic Modeling *23*
2.14.1 Techno-economic Modeling of a Metal–Air System for Transportation Applications *23*
2.14.2 Techno-economic Modeling of Flow Batteries for Grid Storage Applications *25*
2.15 The Electrochemical Discovery Laboratory *27*
2.15.1 The Effect of Trace Water on Beyond Li-ion Devices *27*
2.15.2 Stability of Redox Active Molecules *28*
2.16 Electrolyte Genome *28*
2.16.1 Screening of Redox Active Molecules for Redox Flow *29*
2.16.2 Examination of Multivalent Intercalation Materials *30*

2.17	Combining the Electrolyte Genome with Techno-economic Modeling	31
2.18	Prototype Development	31
2.19	Legacy of JCESR	33
2.20	Conclusion	34
	Acknowledgments	34
	References	34

3 Determination of Redox Reaction Mechanisms in Lithium–Sulfur Batteries 41

Kevin H. Wujcik, Dunyang R. Wang, Alexander A. Teran, Eduard Nasybulin,

Tod A. Pascal, David Prendergast, and Nitash P. Balsara

3.1	Basics of Lithium–Sulfur Chemistry	41
3.2	End Products of Electrochemical Reactions in the Sulfur Cathode	44
3.3	Intermediate Products of Electrochemical Reactions in the Sulfur Cathode	45
3.3.1	Reactions of S_8	45
3.3.2	Reactions of Li_2S_8	46
3.3.3	Reactions of Li_2S_4	47
3.3.4	Reactions of Li_2S_2	48
3.3.5	Production of Radical Anions	49
3.4	Fingerprinting Lithium Polysulfide Intermediates	49
3.4.1	X-ray Absorption Spectroscopy	50
3.4.2	Electron Paramagnetic Resonance Spectroscopy	53
3.4.3	UV–Vis Spectroscopy	54
3.4.4	Raman Spectroscopy	57
3.4.5	Nuclear Magnetic Resonance Spectroscopy	57
3.5	In Situ Spectroscopic Studies of Li–S Batteries	58
3.5.1	X-ray Absorption Spectroscopy	58
3.5.2	Electron Paramagnetic Resonance Spectroscopy	59
3.5.3	UV–Vis Spectroscopy	60
3.5.4	Raman Spectroscopy	60
3.5.5	Nuclear Magnetic Resonance Spectroscopy	61
3.6	Practical Considerations	62
3.7	Concluding Remarks	64
	Acknowledgment	68
	References	68

4 From the Lab to Scaling-up Thin Film Solar Absorbers 75

Hariiklia Deligianni, Lubomyr T. Romankiw, Daniel Lincot, and

Pierre-Philippe Grand

4.1	Introduction	75
4.2	State-of-the-art Electrodeposition for Photovoltaics	79
4.2.1	Electrodeposited CuInGaSe ₂ (CIGS)	80
4.2.1.1	Metal Layers	80
4.2.1.2	Electrodeposition of Copper	81

4.2.1.3	Electrodeposition of Indium	82
4.2.1.4	Electrodeposition of Gallium	85
4.2.2	Single Cu—In—Ga—Se—O Multicomponent Chemistries	89
4.2.2.1	Cu—In—Se Co-deposition	89
4.2.2.2	Cu—In—Ga—Se Co-deposition	91
4.2.2.3	Cu—In—Ga—O Co-deposition	92
4.2.2.4	Cu—In—Ga Co-deposition	93
4.2.3	Annealing Methods	93
4.2.4	Fabrication of Solar Cells	95
4.3	Electrodeposited Cu ₂ ZnSn(Se,S) ₄ (CZTS) and Emerging Materials	97
4.3.1	Cu ₂ ZnSn(Se,S) ₄ (CZTS)	97
4.4	From the Rotating Disk to the Paddle Cell as a Scale-up Platform	99
4.4.1	Introduction to Scale-up	99
4.4.2	Entirely New Solution Agitation Method	100
4.4.3	The Paddle Agitation Technique Is More Readily Scalable	101
4.4.4	Electrical Contact Between the Thin Seed Layer and the Source of Current	103
4.4.5	Previous Scale-up of the Paddle Cell	103
4.4.6	Scale-up of the Paddle Cell to 15 cm × 15 cm	104
4.4.7	Scale-up of the Paddle Cell to 30 cm × 60 cm	107
4.4.8	Improving Within-Wafer Uniformity, Reproducibility, and Demonstration of Scalability	108
4.4.8.1	Within-Wafer Uniformity	108
4.4.8.2	Wafer-to-Wafer Reproducibility	109
4.5	Scaling-up to 60 cm × 120 cm from Tiny Electrodes to Meters	110
4.5.1	A 1 m ² min ⁻¹ Continuous Industrial Scale	110
4.5.2	Bath Control	116
4.5.2.1	Insoluble Anode	118
4.5.2.2	Soluble Anode	118
4.5.2.3	Bath Maintenance and Reproducibility and Steady-State Operation	119
4.6	Conclusions	121
	Acknowledgments	122
	References	123
5	Thin-film Head and the Innovator's Dilemma	129
	<i>Keishi Ohashi</i>	
5.1	Introduction	129
5.2	Thin-film Head Technology	130
5.2.1	Magnetic Properties for HDD	130
5.2.2	Permalloy	130
5.2.3	Thin-film Head	132
5.2.4	Magnetic Domain Noise	133
5.3	Data Storage Business in Japan	137

5.3.1	Magnetic Thin-films for HDD in the 1980s	137
5.3.2	Use of Optics	138
5.3.3	High-Moment Head Core Material	138
5.3.4	High- M_s Write Heads	141
5.4	The Innovator's Dilemma	142
5.4.1	Thin-film Head is not Disruptive	142
5.4.2	Small HDD	143
5.4.3	MR Head	144
5.4.4	GMR Head	145
5.5	TMR Head	147
5.5.1	Infinite MR Ratio	147
5.5.2	Suspicions Surrounding the TMR Head	147
5.5.3	Low-Resistance TMR Head	148
5.5.4	MGO: The Final Push	150
5.5.5	Exploring New Markets	151
5.6	Discussion	151
	Acknowledgments	152
	References	153
6	Development of Fully-Continuous Electrokinetic Dewatering of Phosphatic Clay Suspensions	<i>159</i>
	<i>Rui Kong, Arthur Dizon, Saeed Moghaddam, and Mark E. Orazem</i>	
6.1	Introduction	159
6.1.1	Phosphatic Clay Suspensions	160
6.1.2	Industrial Scope	160
6.1.3	Why is Separation of Water from Clay Difficult?	161
6.2	Current Methods	162
6.2.1	Flocculation	162
6.2.2	Mechanical Dewatering	163
6.2.3	Electrokinetic Separation	163
6.3	Development of Dewatering Technologies for Phosphatic Clays	164
6.3.1	Lab-scale Batch Dewatering	165
6.3.2	Semi-continuous Operation to Recover Clear Supernatant	168
6.3.3	Semi-continuous Operation to Recover Solids	170
6.3.4	Continuous Operation	172
6.3.5	Energy and Power Requirements for All Prototypes Tested	175
6.4	Economic Assessment for On-site Implementation	179
6.4.1	Hydrogen Emission	179
6.4.2	Capital and Operation Costs	180
6.4.2.1	Power and Energy consumption for On-site Operations	181
6.4.2.2	Operation cost	181
6.4.2.3	Capital Cost	183
6.4.3	Results	184
6.5	Our Next Prototype: Dual-zone Continuous Operation	185
6.6	Conclusions	186
	Acknowledgments	187
	References	187

7	Breaking the Chemical Paradigm in Electrochemical Engineering: Case Studies and Lessons Learned from Plating to Polishing	193
	<i>E. Jennings Taylor, Maria E. Inman, Holly M. Garich, Heather A. McCrabb, Stephen T. Snyder, and Timothy D. Hall</i>	
7.1	Introduction	193
7.1.1	Perspective	194
7.2	A Brief Overview of Pulse Reverse Current Plating	196
7.2.1	Mass Transport Effects in Pulse Current Plating	198
7.2.2	Current Distribution Effects in Pulse Current Plating	200
7.2.3	Grain Size Effects in Pulse Current Plating	204
7.2.4	Current Efficiency Effects in Pulse Current Plating	205
7.2.5	Concluding Remarks for Pulse Current Plating	205
7.3	Early Developments in Pulse Plating	206
7.3.1	Leveling Without Levelers Using Pulse Reverse Current Plating	207
7.3.2	Ductility Without Brighteners Using Pulse Current Plating	210
7.4	Transition of Pulse Current Plating Concepts to Surface Finishing	211
7.4.1	Pulse Voltage Deburring of Automotive Planetary Gears	212
7.4.2	Transition to Pulse Reverse Voltage Electropolishing of Passive Materials	214
7.4.3	Sequenced Pulse Reverse Voltage Electropolishing of Semiconductor Valves	216
7.4.4	Pulse Reverse Voltage Electropolishing of Strongly Passive Materials	220
7.4.5	Pulse Reverse Voltage Electropolishing of Niobium Superconducting Radio Frequency Cavities	223
7.4.6	Transition Pulse Reverse Voltage Electropolishing to Niobium Superconducting Radio Frequency Cavities	226
7.5	Concluding Thoughts	232
	Acknowledgments	233
	References	234
8	The Interaction Between a Proton and the Atomic Network in Amorphous Silica Glass Made a Highly Sensitive Trace Moisture Sensor	241
	<i>Yusuke Tsukahara, Nobuo Takeda, Kazushi Yamanaka, and Shingo Akao</i>	
8.1	Unexpected Long Propagation of Surface Acoustic Waves Around a Sphere	241
8.2	Invention of a Ball SAW Device and Application to Gas Sensors	243
8.3	Unexpected Fluctuations in the Output Signal of the Gas Sensor Leading to the Development of Trace Moisture Sensors	249
8.4	Sol–Gel Silica Film for the Trace Moisture Sensors	253
8.5	A Thermodynamic Model of Interaction of Water Vapor with Amorphous Silica Glass	254
8.6	Concluding Remarks	257
	References	257

9	From Sensors to Low-cost Instruments to Networks:
	Semiconducting Oxides as Gas-Sensitive Resistors 261
	<i>David E. Williams</i>
9.1	Overview 261
9.2	Basic Science of Semiconducting Oxides as Gas-Sensitive Resistors 266
9.2.1	Multiscale Modeling of Gas-Sensitive Resistors 266
9.2.1.1	Introduction 266
9.2.1.2	Effective Medium Model 1: Rationalization of Composition Effects on Response 268
9.2.1.3	Effective Medium Model 2: Diffusion–Reaction Effects on Response; Effects of Electrode Geometry and “Self-Diagnostic” Devices 270
9.2.1.4	Microstructure Model: Percolation and Equivalent Circuit Representation 277
9.2.2	Surface Segregation and Surface Modification Effects 284
9.2.2.1	Surface Modification by “Poisoning” 284
9.2.2.2	Surface Modification by Segregation 286
9.2.2.3	Surface Grafting as a Means for Altering Response 288
9.2.3	Surface Defect and Reaction Models 288
9.3	Commercial Development of Sensors and Instruments 291
9.3.1	Introduction 291
9.3.2	Development of a Low-Cost Instrument for Measurement of Ozone in the Atmosphere 298
9.3.3	Signal Drift Detection 303
9.3.4	A Low-Cost Instrument for Measurement of Atmospheric Nitrogen Dioxide 304
9.3.5	Networks of Instruments in the Atmosphere 306
9.4	Conclusion and Prospects 311
	Acknowledgment 313
	References 314
	Index 323