

Contents

Preface *xxiii*
Preface to Second Edition *xxvii*
Preface to Third Edition *xxix*

Part 1 Basic Reactor Physics 1

1	Neutron–Nuclear Reactions 3
1.1	Neutron-Induced Nuclear Fission 3
	Stable Nuclides 3
	Binding Energy 3
	Threshold External Energy for Fission 5
	Neutron-Induced Fission 5
	Neutron Fission Cross Sections 5
	Products of the Fission Reaction 7
	Energy Release 9
1.2	Neutron Capture 12
	Radiative Capture 12
	Neutron Emission 18
1.3	Neutron Elastic Scattering 19
1.4	Summary of Cross Section Data 23
	Low-Energy Cross Sections 23
	Spectrum-Averaged Cross Sections 24
1.5	Evaluated Nuclear Data Files 25
1.6	Elastic Scattering Kinematics 25
	Correlation of Scattering Angle and Energy Loss 26
	Average Energy Loss 27
2	Neutron Chain Fission Reactors 33
2.1	Neutron Chain Fission Reactions 33
	Capture-to-Fission Ratio 33
	Number of Fission Neutrons per Neutron Absorbed in Fuel 33
	Neutron Utilization 34
	Fast Fission 35
	Resonance Escape 36

2.2	Criticality	37
	Effective Multiplication Constant	37
	Effect of Fuel Lumping	37
	Leakage Reduction	38
2.3	Time Dependence of a Neutron Fission Chain Assembly	38
	Prompt Fission Neutron Time Dependence	38
	Source Multiplication	39
	Effect of Delayed Neutrons	39
2.4	Classification of Nuclear Reactors	40
	Physics Classification by Neutron Spectrum	40
	Engineering Classification by Coolant	41
3	Neutron Diffusion and Transport Theory	43
3.1	Derivation of One-Speed Diffusion Theory	43
	Partial and Net Currents	43
	Diffusion Theory	46
	Interface Conditions	46
	Boundary Conditions	46
	Applicability of Diffusion Theory	47
3.2	Solutions of the Neutron Diffusion Equation in Nonmultiplying Media	48
	Plane Isotropic Source in an Infinite Homogeneous Medium	48
	Plane Isotropic Source in a Finite Homogeneous Medium	48
	Line Source in an Infinite Homogeneous Medium	49
	Homogeneous Cylinder of Infinite Axial Extent with Axial Line Source	49
	Point Source in an Infinite Homogeneous Medium	49
	Point Source at the Center of a Finite Homogeneous Sphere	50
3.3	Diffusion Kernels and Distributed Sources in a Homogeneous Medium	50
	Infinite-Medium Diffusion Kernels	50
	Finite-Slab Diffusion Kernel	51
	Finite Slab with Incident Neutron Beam	52
3.4	Albedo Boundary Condition	52
3.5	Neutron Diffusion and Migration Lengths	53
	Thermal Diffusion-Length Experiment	53
	Migration Length	56
3.6	Bare Homogeneous Reactor	57
	Slab Reactor	58
	Right Circular Cylinder Reactor	59
	Interpretation of Criticality Condition	61
	Optimum Geometries	61
3.7	Reflected Reactor	62
	Reflected Slab Reactor	63
	Reflector Savings	65
	Reflected Spherical, Cylindrical, and Rectangular Parallelepiped Cores	65

3.8	Homogenization of a Heterogeneous Fuel–Moderator Assembly	65
	Spatial Self-Shielding and Thermal Disadvantage Factor	65
	Effective Homogeneous Cross Sections	68
	Thermal Utilization	70
	Measurement of Thermal Utilization	70
	Local Power Peaking Factor	71
3.9	Control Rods	72
	Effective Diffusion Theory Cross Sections for Control Rods	72
	Windowshade Treatment of Control Rods	74
3.10	Numerical Solution of Diffusion Equation	76
	Finite-Difference Equations in One Dimension	76
	Forward Elimination/Backward Substitution Spatial Solution Procedure	78
	Power Iteration on Fission Source	78
	Finite-Difference Equations in Two Dimensions	79
	Successive Relaxation Solution of Two-Dimensional Finite-Difference Equations	81
	Power Outer Iteration on Fission Source	81
	Limitations on Mesh Spacing	82
3.11	Nodal Approximation	82
3.12	Transport Methods	84
	Transmission and Absorption in a Purely Absorbing Slab Control Plate	86
	Escape Probability in a Slab	86
	Integral Transport Formulation	86
	Collision Probability Method	88
	Differential Transport Formulation	89
	Spherical Harmonics Methods	89
	Boundary and Interface Conditions	91
	P_1 Equations and Diffusion Theory	92
	Discrete Ordinates Method	93
4	Neutron Energy Distribution	101
4.1	Analytical Solutions in an Infinite Medium	101
	Fission Source Energy Range	102
	Slowing-Down Energy Range	102
	Moderation by Hydrogen Only	103
	Energy Self-Shielding	103
	Slowing Down by Nonhydrogenic Moderators with No Absorption	104
	Slowing-Down Density	105
	Slowing Down with Weak Absorption	106
	Fermi Age Neutron Slowing Down	107
	Neutron Energy Distribution in the Thermal Range	108
	Summary	111

4.2	Multigroup Calculation of Neutron Energy Distribution in an Infinite Medium	112
	Derivation of Multigroup Equations	112
	Mathematical Properties of the Multigroup Equations	114
	Solution of Multigroup Equations	115
	Preparation of Multigroup Cross-Section Sets	116
4.3	Resonance Absorption	118
	Resonance Cross Sections	118
	Doppler Broadening	120
	Resonance Integral	122
	Resonance Escape Probability	122
	Multigroup Resonance Cross Section	122
	Practical Width	122
	Neutron Flux in Resonance	123
	Narrow Resonance Approximation	123
	Wide Resonance Approximation	124
	Resonance Absorption Calculations	126
	Temperature Dependence of Resonance Absorption	126
4.4	Multigroup Diffusion Theory	127
	Multigroup Diffusion Equations	127
	Two-Group Theory	128
	Two-Group Bare Reactor	128
	One-and-One-Half-Group Theory	129
	Two-Group Theory of Two-Region Reactors	130
	Two-Group Theory of Reflected Reactors	133
	Numerical Solutions for Multigroup Diffusion Theory	135
5	Nuclear Reactor Dynamics	141
5.1	Delayed Fission Neutrons	141
	Neutrons Emitted in Fission Product Decay	141
	Effective Delayed Neutron Parameters for Composite Mixtures	143
	Photoneutrons	144
5.2	Point Kinetics Equations	145
5.3	Period-Reactivity Relations	146
5.4	Approximate Solutions of the Point Neutron Kinetics Equations	148
	One-Delayed Neutron Group Approximation	148
	Prompt-Jump Approximation	151
	Reactor Shutdown	153
5.5	Delayed Neutron Kernel and Zero-Power Transfer Function	153
	Delayed Neutron Kernel	153
	Zero-Power Transfer Function	154
5.6	Experimental Determination of Neutron Kinetics Parameters	155
	Asymptotic Period Measurement	155
	Rod Drop Method	155
	Source Jerk Method	156
	Pulsed Neutron Methods	156
	Rod Oscillator Measurements	157

	Zero-Power Transfer Function Measurements	158
	Rossi- α Measurement	158
5.7	Reactivity Feedback	160
	Temperature Coefficients of Reactivity	161
	Doppler Effect	162
	Fuel and Moderator Expansion Effect on Resonance Escape Probability	164
	Thermal Utilization	165
	Nonleakage Probability	165
	Representative Thermal Reactor Reactivity Coefficients	166
	Startup Temperature Defect	167
5.8	Perturbation Theory Evaluation of Reactivity Temperature Coefficients	168
	Perturbation Theory	168
	Sodium Void Effect in Fast Reactors	169
	Doppler Effect in Fast Reactors	170
	Fuel and Structure Motion in Fast Reactors	170
	Fuel Bowing	171
	Representative Fast Reactor Reactivity Coefficients	171
5.9	Reactor Stability	171
	Reactor Transfer Function with Reactivity Feedback	171
	Stability Analysis for a Simple Feedback Model	173
	Threshold Power Level for Reactor Stability	174
	More General Stability Conditions	176
	Power Coefficients and Feedback Delay Time Constants	178
5.10	Measurement of Reactor Transfer Functions	179
	Rod Oscillator Method	180
	Correlation Methods	180
	Reactor Noise Method	182
5.11	Reactor Transients with Feedback	184
	Step Reactivity Insertion ($\rho_{ex} < \beta$): Prompt Jump	185
	Step Reactivity Insertion ($\rho_{ex} < \beta$): Post-Prompt-Jump Transient	186
5.12	Reactor Fast Excursions	187
	Step Reactivity Input: Feedback Proportional to Fission Energy	187
	Ramp Reactivity Input: Feedback Proportional to Fission Energy	188
	Step Reactivity Input: Nonlinear Feedback Proportional to Cumulative Energy Release	189
	Bethe–Tait Model	190
5.13	Numerical Methods	192
6	Fuel Burnup	197
6.1	Changes in Fuel Composition	197
	Fuel Transmutation–Decay Chains	198
	Fuel Depletion–Transmutation–Decay Equations	199
	Fission Products	203
	Solution of the Depletion Equations	204

	Measure of Fuel Burnup	205
	Fuel Composition Changes with Burnup	205
	Reactivity Effects of Fuel Composition Changes	206
	Compensating for Fuel-Depletion Reactivity Effects	207
	Reactivity Penalty	208
	Effects of Fuel Depletion on the Power Distribution	209
	In-Core Fuel Management	210
6.2	Samarium and Xenon	211
	Samarium Poisoning	211
	Xenon Poisoning	213
	Peak Xenon	215
	Effect of Power-Level Changes	215
6.3	Fertile-to-Fissile Conversion and Breeding	217
	Availability of Neutrons	217
	Conversion and Breeding Ratios	217
6.4	Simple Model of Fuel Depletion	219
6.5	Fuel Reprocessing and Recycling	221
	Composition of Recycled LWR Fuel	221
	Physics Differences of MOX Cores	222
	Physics Considerations with Uranium Recycle	224
	Physics Considerations with Plutonium Recycle	224
	Reactor Fueling Characteristics	225
6.6	Radioactive Waste	225
	Radioactivity	225
	Hazard Potential	226
	Risk Factor	226
6.7	Burning Surplus Weapons-Grade Uranium and Plutonium	232
	Composition of Weapons-Grade Uranium and	
	Plutonium	232
	Physics Differences Between Weapons- and Reactor-Grade	
	Plutonium-Fueled Reactors	232
6.8	Utilization of Uranium Energy Content	234
6.9	Transmutation of Spent Nuclear Fuel	236
6.10	Closing the Nuclear Fuel Cycle	242
7	Nuclear Power Reactors	247
7.1	Pressurized Water Reactors	247
7.2	Boiling Water Reactors	249
7.3	Pressure Tube Heavy Water–Moderated Reactors	253
7.4	Pressure Tube Graphite–Moderated Reactors	255
7.5	Graphite–Moderated Gas-Cooled Reactors	258
7.6	Liquid Metal Fast Reactors	260
7.7	Other Power Reactors	265
7.8	Characteristics of Power Reactors	266
7.9	Advanced Generation-III Reactors	267
	Advanced Boiling Water Reactors (ABWR)	267
	Advanced Pressurized Water Reactors (APWR)	267

	Advanced Pressure Tube Reactor	269
	Modular High-Temperature Gas-Cooled Reactors (GT-MHR)	269
7.10	Advanced Generation-IV Reactors	271
	Gas-Cooled Fast Reactors (GFR)	271
	Lead-Cooled Fast Reactors (LFR)	272
	Molten Salt Reactors (MSR)	273
	Supercritical Water Reactors (SCWR)	273
	Sodium-Cooled Fast Reactors (SFR)	273
	Very High Temperature Reactors (VHTR)	273
7.11	Advanced Subcritical Reactors	274
7.12	Nuclear Reactor Analysis	276
	Construction of Homogenized Multigroup Cross Sections	276
	Criticality and Flux Distribution Calculations	277
	Fuel Cycle Analyses	278
	Transient Analyses	279
	Core Operating Data	280
	Criticality Safety Analysis	280
7.13	Interaction of Reactor Physics and Reactor Thermal Hydraulics	281
	Power Distribution	281
	Temperature Reactivity Effects	282
	Coupled Reactor Physics and Thermal Hydraulics Calculations	282
8	Reactor Safety	285
8.1	Elements of Reactor Safety	285
	Radionuclides of Greatest Concern	285
	Multiple Barriers to Radionuclide Release	285
	Defense in Depth	287
	Energy Sources	287
8.2	Reactor Safety Analysis	287
	Loss of Flow or Loss of Coolant	288
	Loss of Heat Sink	289
	Reactivity Insertion	289
	Anticipated Transients without Scram	289
8.3	Quantitative Risk Assessment	289
	Probabilistic Risk Assessment	289
	Radiological Assessment	290
	Reactor Risks	293
8.4	Reactor Accidents	294
	Three Mile Island	294
	Chernobyl	298
	Fukushima	300
8.5	Passive Safety	300
	Pressurized Water Reactors	300
	Boiling Water Reactors	301
	Integral Fast Reactors	301
	Passive Safety Demonstration	301

Part 2 Advanced Reactor Physics 305

9	Neutron Transport Theory 307
9.1	Neutron Transport Equation 307 Boundary Conditions 309 Scalar Flux and Current 310 Partial Currents 311
9.2	Integral Transport Theory 312 Isotropic Point Source 313 Isotropic Plane Source 313 Anisotropic Plane Source 315 Transmission and Absorption Probabilities 317 Escape Probability 317 First-Collision Source for Diffusion Theory 318 Inclusion of Isotropic Scattering and Fission 318 Distributed Volumetric Sources in Arbitrary Geometry 320 Flux from a Line Isotropic Source of Neutrons 320 Bickley Functions 321 Probability of Reaching a Distance t from a Line Isotropic Source without a Collision 322
9.3	Collision Probability Methods 323 Reciprocity Among Transmission and Collision Probabilities 323 Collision Probabilities for Slab Geometry 324 Collision Probabilities in Two-Dimensional Geometry 325 Collision Probabilities for Annular Geometry 326
9.4	Interface Current Methods in Slab Geometry 327 Emergent Currents and Reaction Rates Due to Incident Currents 327 Emergent Currents and Reaction Rates Due to Internal Sources 331 Total Reaction Rates and Emergent Currents 333 Boundary Conditions 334 Response Matrix 335
9.5	Multidimensional Interface Current Methods 336 Extension to Multidimension 336 Evaluation of Transmission and Escape Probabilities 338 Transmission Probabilities in Two-Dimensional Geometries 339 Escape Probabilities in Two-Dimensional Geometries 342 Simple Approximations for the Escape Probability 343
9.6	Spherical Harmonics (P_L) Methods in One-Dimensional Geometries 344 Legendre Polynomials 344 Neutron Transport Equation in Slab Geometry 345 P_L Equations 346 Boundary and Interface Conditions 347 P_1 Equations and Diffusion Theory 348 Simplified P_L or Extended Diffusion Theory 350 P_L Equations in Spherical and Cylindrical Geometries 351

Diffusion Equations in One-Dimensional Geometry	354
Half-Angle Legendre Polynomials	354
Double- P_L Theory	355
D- P_0 Equations	357
9.7 Multidimensional Spherical Harmonics (P_L) Transport Theory	357
Spherical Harmonics	357
Spherical Harmonics Transport Equations in Cartesian Coordinates	359
P_1 Equations in Cartesian Geometry	360
Diffusion Theory	361
9.8 Discrete Ordinates Methods in One-Dimensional Slab Geometry	362
P_L and D- P_L Ordinates	363
Spatial Differencing and Iterative Solution	366
Limitations on Spatial Mesh Size	367
9.9 Discrete Ordinates Methods in One-Dimensional Spherical Geometry	368
Representation of Angular Derivative	368
Iterative Solution Procedure	369
Acceleration of Convergence	371
Calculation of Criticality	372
9.10 Multidimensional Discrete Ordinates Methods	372
Ordinates and Quadrature Sets	372
S_N Method in Two-Dimensional x-y Geometry	375
Further Discussion	378
9.11 Even-Parity Transport Formulation	379
9.12 Monte Carlo Methods	380
Probability Distribution Functions	380
Analog Simulation of Neutron Transport	381
Statistical Estimation	383
Variance Reduction	385
Tallying	387
Criticality Problems	389
Source Problems	390
Random Numbers	390
10 Neutron Slowing Down	395
10.1 Elastic Scattering Transfer Function	395
Lethargy	395
Elastic Scattering Kinematics	395
Elastic Scattering Kernel	396
Isotropic Scattering in Center-of-Mass System	398
Linearly Anisotropic Scattering in Center-of-Mass System	399
10.2 P_1 and B_1 Slowing-Down Equations	400
Derivation	400
Solution in Finite Uniform Medium	404
B_1 Equations	405
Few-Group Constants	407

10.3	Diffusion Theory	407
	Lethargy-Dependent Diffusion Theory	407
	Directional Diffusion Theory	408
	Multigroup Diffusion Theory	409
	Boundary and Interface Conditions	410
10.4	Continuous Slowing-Down Theory	411
	P_1 Equations in Slowing-Down Density Formulation	411
	Slowing-Down Density in Hydrogen	415
	Heavy Mass Scatterers	415
	Age Approximation	416
	Selengut–Goertzel Approximation	416
	Consistent P_1 Approximation	416
	Extended Age Approximation	417
	Grueling–Goertzel Approximation	418
	Summary of P_l Continuous Slowing-Down Theory	419
	Inclusion of Anisotropic Scattering	419
	Inclusion of Scattering Resonances	421
	P_l Continuous Slowing-Down Equations	422
10.5	Multigroup Discrete Ordinates Transport Theory	423
11	Resonance Absorption	429
11.1	Resonance Cross Sections	429
11.2	Widely Spaced Single-Level Resonances in a Heterogeneous Fuel–Moderator Lattice	429
	Neutron Balance in Heterogeneous Fuel–Moderator Cell	429
	Reciprocity Relation	432
	Narrow Resonance Approximation	433
	Wide Resonance Approximation	434
	Evaluation of Resonance Integrals	434
	Infinite Dilution Resonance Integral	436
	Equivalence Relations	436
	Heterogeneous Resonance Escape Probability	436
	Homogenized Multigroup Resonance Cross Section	438
	Improved and Intermediate Resonance Approximations	438
11.3	Calculation of First-Flight Escape Probabilities	439
	Escape Probability for an Isolated Fuel Rod	439
	Closely Packed Lattices	442
11.4	Unresolved Resonances	444
	Multigroup Cross Sections for Isolated Resonances	446
	Self-Overlap Effects	447
	Overlap Effects for Different Sequences	448
11.5	Multiband Treatment of Spatially Dependent Self-Shielding	449
	Spatially Dependent Self-Shielding	449
	Multiband Theory	450
	Evaluation of Multiband Parameters	453
	Calculation of Multiband Parameters	454
	Interface Conditions	455

11.6	Resonance Cross Section Representations	456
	R-Matrix Representation	456
	Practical Formulations	457
	Generalization of the Pole Representation	461
	Doppler Broadening of the Generalized Pole Representation	464
12	Neutron Thermalization	469
12.1	Double Differential Scattering Cross Section for Thermal Neutrons	469
12.2	Neutron Scattering from a Monatomic Maxwellian Gas	470
	Differential Scattering Cross Section	470
	Cold Target Limit	471
	Free-Hydrogen (Proton) Gas Model	471
	Radkowsky Model for Scattering from H_2O	471
	Heavy Gas Model	472
12.3	Thermal Neutron Scattering from Bound Nuclei	473
	Pair Distribution Functions and Scattering Functions	473
	Intermediate Scattering Functions	474
	Incoherent Approximation	475
	Gaussian Representation of Scattering	475
	Measurement of the Scattering Function	476
	Applications to Neutron Moderating Media	476
12.4	Calculation of the Thermal Neutron Spectra in Homogeneous Media	478
	Wigner–Wilkins Proton Gas Model	480
	Heavy Gas Model	483
	Numerical Solution	486
	Moments Expansion Solution	486
	Multigroup Calculation	490
	Applications to Moderators	491
12.5	Calculation of Thermal Neutron Energy Spectra in Heterogeneous Lattices	492
12.6	Pulsed Neutron Thermalization	494
	Spatial Eigenfunction Expansion	494
	Energy Eigenfunctions of the Scattering Operator	494
	Expansion in Energy Eigenfunctions of the Scattering Operator	496
13	Perturbation and Variational Methods	501
13.1	Perturbation Theory Reactivity Estimate	501
	Multigroup Diffusion Perturbation Theory	501
13.2	Adjoint Operators and Importance Function	504
	Adjoint Operators	504
	Importance Interpretation of the Adjoint Function	506
	Eigenvalues of the Adjoint Equation	507
13.3	Variational/Generalized Perturbation Reactivity Estimate	508
	One-Speed Diffusion Theory	508
	Other Transport Models	511

	Reactivity Worth of Localized Perturbations in a Large PWR Core Model	512
	Higher Order Variational Estimates	512
13.4	Variational/Generalized Perturbation Theory Estimates of Reaction Rate Ratios in Critical Reactors	512
13.5	Variational/Generalized Perturbation Theory Estimates of Reaction Rates	515
13.6	Variational Theory	516
	Stationarity	516
	Roussopolos Variational Functional	517
	Schwinger Variational Functional	517
	Rayleigh Quotient	518
	Construction of Variational Functionals	519
13.7	Variational Estimate of Intermediate Resonance Integral	519
13.8	Heterogeneity Reactivity Effects	521
13.9	Variational Derivation of Approximate Equations	522
	Inclusion of Interface and Boundary Terms	523
13.10	Variational Even-Parity Transport Approximations	524
	Variational Principle for the Even-Parity Transport Equation	524
	Ritz Procedure	525
	Diffusion Approximation	526
	One-Dimensional Slab Transport Equation	527
13.11	Boundary Perturbation Theory	527
14	Homogenization	535
14.1	Equivalent Homogenized Cross Sections	536
14.2	ABH Collision Probability Method	537
14.3	Blackness Theory	541
14.4	Fuel Assembly Transport Calculations	543
	Pin Cells	543
	Wigner–Seitz Approximation	543
	Collision Probability Pin-Cell Model	544
	Interface Current Formulation	548
	Multigroup Pin-Cell Collision Probabilities Model	549
	Resonance Cross Sections	550
	Full Assembly Transport Calculation	550
14.5	Homogenization Theory	551
	Homogenization Considerations	551
	Conventional Homogenization Theory	552
14.6	Equivalence Homogenization Theory	553
14.7	Multiscale Expansion Homogenization Theory	556
14.8	Flux Detail Reconstruction	560
15	Nodal and Synthesis Methods	563
15.1	General Nodal Formalism	564
15.2	Conventional Nodal Methods	567

15.3	Transverse Integrated Nodal Diffusion Theory Methods	570
	Transverse Integrated Equations	570
	Polynomial Expansion Methods	571
	Analytical Methods	576
	Heterogeneous Flux Reconstruction	577
15.4	Transverse Integrated Nodal Integral Transport Theory Models	577
	Transverse Integrated Integral Transport Equations	577
	Polynomial Expansion of Scalar Flux	581
	Isotropic Component of Transverse Leakage	581
	Double- P_n Expansion of Surface Fluxes	582
	Angular Moments of Outgoing Surface Fluxes	583
	Nodal Transport Equations	584
15.5	Transverse Integrated Nodal Discrete Ordinates Method	585
15.6	Finite-Element Coarse-Mesh Methods	586
	Variational Functional for the P_1 Equations	587
	One-Dimensional Finite-Difference Approximation	588
	Diffusion Theory Variational Functional	590
	Linear Finite-Element Diffusion Approximation in One Dimension	591
	Higher Order Cubic Hermite Coarse-Mesh Diffusion Approximation	593
	Multidimensional Finite-Element Coarse-Mesh Methods	595
15.7	Variational Discrete Ordinates Nodal Method	595
	Variational Principle	596
	Application of the Method	604
15.8	Variational Principle for Multigroup Diffusion Theory	605
15.9	Single-Channel Spatial Synthesis	608
15.10	Multichannel Spatial Synthesis	614
15.11	Spectral Synthesis	616
16	Space-Time Neutron Kinetics	623
16.1	Flux Tilts and Delayed Neutron Holdback	623
	Modal Eigenfunction Expansion	624
	Flux Tilts	625
	Delayed Neutron Holdback	626
16.2	Spatially Dependent Point Kinetics	626
	Derivation of Point Kinetics Equations	628
	Adiabatic and Quasistatic Methods	630
	Variational Principle for Static Reactivity	631
	Variational Principle for Dynamic Reactivity	632
16.3	Time Integration of the Spatial Neutron Flux Distribution	635
	Explicit Integration: Forward-Difference Method	635
	Implicit Integration: Backward-Difference Method	636
	Implicit Integration: θ Method	637
	Implicit Integration: Time-Integrated Method	640
	Implicit Integration: GAKIN Method	642

	Alternating Direction Implicit Method	645
	Stiffness Confinement Method	648
	Symmetric Successive Overrelaxation Method	648
	Generalized Runge–Kutta Methods	649
16.4	Stability	651
	Classical Linear Stability Analysis	651
	Lyapunov's Method	653
	Lyapunov's Method for Distributed Parameter Systems	655
	Control	657
	Variational Methods of Control Theory	657
	Dynamic Programming	659
	Pontryagin's Maximum Principle	661
	Variational Methods for Spatially Dependent Control Problems	662
	Dynamic Programming for Spatially Continuous Systems	665
	Pontryagin's Maximum Principle for a Spatially Continuous System	666
16.5	Xenon Spatial Oscillations	667
	Linear Stability Analysis	669
	μ -Mode Approximation	671
	λ -Mode Approximation	672
	Nonlinear Stability Criterion	676
	Control of Xenon Spatial Power Oscillations	677
	Variational Control Theory of Xenon Spatial Oscillations	677
16.6	Stochastic Kinetics	680
	Forward Stochastic Model	680
	Means, Variances, and Covariances	684
	Correlation Functions	685
	Physical Interpretation, Applications, and Initial and Boundary Conditions	686
	Numerical Studies	688
	Startup Analysis	690

Appendices

A	Physical Constants and Nuclear Data	695
B	Some Useful Mathematical Formulas	703
C	Step Functions, Delta Functions, and Other Functions	705
C.1	Introduction	705
C.2	Properties of the Dirac δ -Function	706
	Alternative Representations	706
	Properties	706
	Derivatives	707
D	Some Properties of Special Functions	709

E Introduction to Matrices and Matrix Algebra 713

E.1 Some Definitions 713

E.2 Matrix Algebra 715

F Introduction to Laplace Transforms 717

F.1 Motivation 717

F.2 "Cookbook" Laplace Transforms 719

Index 723