V		Foreword of the series editors
VI		Foreword
X		Preface to the second English edition
XXVI		About this series
XXVII		About the series editors
XXVIII		About the author
2	1	The tasks and aims of a historical study of the theory of structures
4	1.1	Internal scientific tasks
8	1.2	Practical engineering tasks
9	1.3	Didactic tasks
11	1.4	Cultural tasks
12	1.5	Aims
12	1.6	An invitation to take part in a journey through time to search
		for the equilibrium of loadbearing structures
14	2	Learning from history: 12 introductory essays
15	2.1	What is theory of structures?
15	2.1.1	Preparatory period (1575 – 1825)
15	2.1.1.1	Orientation phase (1575 – 1700)
17	2.1.1.2	Application phase (1700 – 1775)
17	2.1.1.3	Initial phase (1775 – 1825)
18	2.1.2	Discipline-formation period (1825 – 1900)
19	2.1.2.1	Constitution phase (1825 – 1850)
20	2.1.2.2	Establishment phase (1850 – 1875)
21	2.1.2.3	Classical phase (1875 – 1900)
22	2.1.3	Consolidation period (1900 – 1950)
22	2.1.3.1	Accumulation phase (1900 – 1925)
23	2.1.3.2	Invention phase (1925 – 1950)
24	2.1.4	Integration period (1950 to date)
25	2.1.4.1	Innovation phase (1950 – 1975)
26	2.1.4.2	Diffusion phase (1975 to date)
27	2.2	From the lever to the trussed framework
27	2.2.1	Lever principle according to Archimedes

XII

- 28 2.2.2 The principle of virtual displacements
- 28 2.2.3 The general work theorem
- 29 2.2.4 The principle of virtual forces
- 29 2.2.5 The parallelogram of forces
- 30 2.2.6 From Newton to Lagrange
- 31 2.2.7 The couple
- 32 2.2.8 Kinematic or geometric school of statics?
- 33 2.2.9 Stable or unstable, determinate or indeterminate?
- 33 2.2.10 Syntheses in statics
- 36 2.2.11 Schwedler's three-pin frame
- 38 2.3 The development of higher engineering education
- 39 2.3.1 The specialist and military schools of the ancien régime
- 40 2.3.2 Science and enlightenment
- 40 2.3.3 Science and education during the French Revolution (1789 1794)
- 41 2.3.4 Monge's curriculum for the École Polytechnique
- 42 2.3.5 Austria, Germany and Russia in the wake of the École Polytechnique
- 46 2.3.6 The education of engineers in the United States
- 51 2.4 A study of earth pressure on retaining walls
- 53 2.4.1 Earth pressure determination according to Culmann
- 54 2.4.2 Earth pressure determination according to Poncelet
- 55 2.4.3 Stress and stability analyses
- 58 2.5 Insights into bridge-building and theory of structures in the 19th century
- 58 2.5.1 Suspension bridges
- 60 2.5.1.1 Austria
- 61 2.5.1.2 Bohemia and Moravia
- 62 2.5.1.3 Germany
- 63 2.5.1.4 United States of America
- 64 2.5.2 Timber bridges
- 67 2.5.3 Hybrid systems
- 68 2.5.4 The Göltzsch and Elster viaducts (1845 1851)
- 70 2.5.5 The Britannia Bridge (1846 1850)
- 73 2.5.6 The first Dirschau Bridge over the Vistula (1850 1857)
- 75 2.5.7 The Garabit Viaduct (1880 1884)
- 79 2.5.8 Bridge engineering theories
- 80 2.5.8.1 Reichenbach's arch theory
- 81 2.5.8.2 Young's masonry arch theory
- 84 2.5.8.3 Navier's suspension bridge theory
- 85 2.5.8.4 Navier's Résumé des Leçons
- 86 2.5.8.5 The trussed framework theories of Culmann and Schwedler
- 87 2.5.8.6 Beam theory and stress analysis
- 88 2.6 The industrialisation of steel bridge-building between 1850 and 1900
- 88 2.6.1 Germany and Great Britain
- 90 2.6.2 France
- 92 2.6.3 United States of America
- 97 2.7 Influence lines
- 97 2.7.1 Railway trains and bridge-building
- 99 2.7.2 Evolution of the influence line concept

101	2.8	The beam on elastic supports
102	2.8.1	The Winkler bedding
102	2.8.2	The theory of the permanent way
104	2.8.3	From permanent way theory to the theory of the beam on elastic supports
106	2.8.4	Geotechnical engineering brings progress
107	2.9	Displacement method
108	2.9.1	Analysis of a triangular frame
109	2.9.1.1	Bar end moments
110	2.9.1.2	Restraint forces
112	2.9.1.3	Superposition means combining the state variables linearly
		with the solution
112	2.9.2	Comparing the displacement method and trussed framework theory
		for frame-type systems
113	2.10	Second-order theory
113	2.10.1	Josef Melan's contribution
114	2.10.2	Suspension bridges become stiffer
115	2.10.3	Arch bridges become more flexible
115	2.10.4	The differential equation for laterally loaded struts and ties
116	2.10.5	The integration of second-order theory into the displacement method
117	2.10.6	Why do we need fictitious forces?
120	2.11	Ultimate load method
121	2.11.1	First approaches
123	2.11.2	Foundation of the ultimate load method
123		Josef Fritsche
124		Karl Girkmann
126		Other authors
127	2.11.3	The paradox of the plastic hinge method
130	2.11.4	The establishment of the ultimate load method
130		Sir John Fleetwood Baker
130		Excursion: a sample calculation
133		Calculating deformations
133		The Anglo-American school of ultimate load theory
135		Controversies surrounding the ultimate load method
137	2.12	Structural law – Static law – Formation law
137	2.12.1	The five Platonic bodies
139	2.12.2	Beauty and law
141		Structural law
142		Static law
142	2.12.2.3	Formation law
144	3	The first fundamental engineering science disciplines: theory of structures
	2.1	and applied mechanics
145	3.1	What is engineering science?
146	3.1.1	First approaches
148	3.1.2	Raising the status of the engineering sciences through philosophical discourse
150	3.1.2.1	The contribution of systems theory

152	3.1.2.2	The contribution of Marxism
154	3.1.2.3	Engineering sciences theory
157	3.1.3	Engineering and the engineering sciences
161	3.2	Subsuming the encyclopaedic in the system of classical engineering
		sciences: five case studies from applied mechanics and theory of structure
162	3.2.1	On the topicality of the encyclopaedic
165	3.2.2	Franz Joseph Ritter von Gerstner's contribution to the mathematisation
		of construction theories
165	3.2.2.1	Gerstner's definition of the object of applied mechanics
168	3.2.2.2	The strength of iron
171	3.2.2.3	The theory and practice of suspension bridges in Handbuch der Mechanik
174	3.2.3	Weisbach's encyclopaedia of applied mechanics
174	3.2.3.1	The Lehrbuch
177	3.2.3.2	The invention of the engineering manual
179	3.2.3.3	The journal
180	3.2.3.4	Strength of materials in Weisbach's Lehrbuch
182	3.2.4	Rankine's Manuals, or the harmony between theory and practice
182	3.2.4.1	Rankine's Manual of Applied Mechanics
185	3.2.4.2	Rankine's Manual of Civil Engineering
186	3.2.5	Föppl's Vorlesungen über technische Mechanik
186	3.2.5.1	The origin and goal of mechanics
188	3.2.5.2	The structure of the Vorlesungen
189	3.2.5.3	The most important applied mechanics textbooks in German
190	3.2.6	The Handbuch der Ingenieurwissenschaften as an encyclopaedia of
		classical civil engineering theory
192	3.2.6.1	Iron beam bridges
193	3.2.6.2	Iron arch and suspension bridges
196	4	From masonry arch to elastic arch
199	4.1	The arch allegory
200	4.2	The geometrical thinking behind the theory of masonry arch bridges
200	4.2.1	The Ponte S. Trinità in Florence
203	4.2.1.1	Galileo and Guidobaldo del Monte
205	4.2.1.2	Hypotheses
205	4.2.2	Establishing the new thinking in bridge-building practice using
		the example of Nuremberg's Fleisch Bridge
206	4.2.2.1	Designs for the building of the Fleisch Bridge
207	4.2.2.2	Designs and considerations concerning the centering
208	4.2.2.3	The loadbearing behaviour of the Fleisch Bridge
211	4.3	From wedge to masonry arch, or the addition theorem of wedge theory
212	4.3.1	Between mechanics and architecture: masonry arch theory at the
		Académie Royale d'Architecture de Paris (1687 – 1718)
212	4.3.2	La Hire and Bélidor
214	4.3.3	Epigones
215	4.4	From the analysis of masonry arch collapse mechanisms to voussoir rotation theory
216	4.4.1	Baldi
		—

2184.4.4Couplet2214.4.5Bridge-building – empiricism still reigns2224.4.6Coulomb's voussoir rotation theory2234.4.7Monasterio's Nueva Teórica2254.5.1Freline of thrust theory2264.5.2Gerstner2304.5.3The search for the true line of thrust2324.6.1The breakthrough for elastic theory2324.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2404.6.3From Poncelet to Winkler2414.6.5.1Grandes Voûtes2424.6.5.2Doubts2434.6.5.3Tests on models2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch bridges2534.7.6Heyman extends masonry arch theory2544.10On the epistemological status of masonry arch theories2544.10Wedge theory2554.7.6Heyman extends masonry arches as an object in historical theory of structures2664.10.2Collapse mechanism analysis and vo			
2194.4.4Couplet2214.4.5Bridge-building – empiricism still reigns2224.4.6Coulomb's vousoir rotation theory2234.4.7Monasterios Nueva Teórica2254.5.1The line of thrust theory2254.5.1Prelude2284.5.2Gerstner2304.5.3The search for the true line of thrust2314.6The breakthrough for elastic theory2324.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2404.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2424.6.5.2Doubts2434.6.5.3Tests on models2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch bridges2534.8The finite element method2644.10.1On the epistemological status of masonry arch theory2654.10.2On the epistemological status of masonry arches as an	217	4.4.2	Fabri
2214.4.5Bridge-building - empiricism still reigns2224.4.6Coulomb's vousoir rotation theory2234.4.7Monasterio's Nueva Teórica2254.5.1The line of thrust theory2254.5.1Prelude2284.5.2Gerstner2304.5.3The search for the true line of thrust2324.6.1The breakthrough for elastic theory2324.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2404.6.5From Poncelet to Winkler2344.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voites2424.6.5.3Tests on models2434.6.5.3Tests on models2444.6.5.3Tests on models2454.6.5.3Tests on models2464.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2534.8The finite element method2644.9The studies of Holzer2654.10On the epistemological status of masonry arch theory2664.10.1Wedge theory2675.1Retaining			
2224.4.6Coulomb's voussoir rotation theory2234.4.7Monasterio's Nueva Teórica2254.5.1Prelude2284.5.2Gerstner2304.5.3The search for the true line of thrust2324.6The breakthrough for elastic theory2324.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2404.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5.1Grandes Voites2414.6.5.2Doubts2424.6.5.3Tests on models2434.6.5.2Doubts2444.6.5.2Of cracks and the true line of thrust in the masonry arch2454.7.2Masonry arch failures2464.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch theory2584.8The finite element method2604.9The studies of Holzer2614.10On the epistemological status of masonry arch theories2624.10.1Wedge theory2634.10.2Collapse mechanism analysis and voussoir rotation theory2644.10Ultimate load theory for masonry arches2755.1	219	4.4.4	Couplet
2234.4.7Monasterio's Nueva Teórica2254.5.1Prelude2284.5.2Gerstner2304.5.3The breakthrough for elastic theory2324.6The breakthrough for elastic theory2324.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2424.6.5.2Doubts2434.6.5.3Tests on models2444.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch bridges2534.7.6Heyman extends masonry arch theory2544.10On the epistemological status of masonry arch theories2654.10On the epistemological status of masonry arch theories2664.10.1Wedge theory2674.10.2Collapse mechanism analysis and voussoir rotation theory of structures2684.10.5The finit	221	4.4.5	Bridge-building – empiricism still reigns
2254.5.1The line of thrust theory2284.5.2Gerstner3004.5.3The search for the true line of thrust2324.6The breakthrough for elastic theory2324.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2544.7.6Heyman extends masonry arch theory2584.8The finite element method2604.9The studies of Holzer2614.10On the epistemological status of masonry arch theories2624.10Collapse mechanism analysis and voussoir rotation theory2634.10Line of thrust theory and elastic theory for masonry arches2644.10Ultimate load theory for masonry arches as an object in historica	222	4.4.6	Coulomb's voussoir rotation theory
2254.5.1Prelude2284.5.2Gerstner2304.5.3The search for the true line of thrust2324.6.1The breakthrough for elastic theory2334.6.2Two steps forwards, one back2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch theory2584.8Heyman extends masonry arch theory2594.7.6Heyman extends masonry arch theory2604.10On the epistemological status of masonry arch theories2614.10On the epistemological status of masonry arch theory2624.10.1Wedge theory2634.10.2Collapse mechanism analysis and voussoir rotation theory2644.10.1Ultimate load theory for masonry arches as an object in historical theory of structures2705The history of earth pressure theory271	223	4.4.7	Monasterio's Nueva Teórica
2284.5.2Gerstner2304.5.3The search for the true line of thrust2324.6The breakthrough for elastic theory2324.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2534.7.6Heyman extends masonry arch theory2544.7.6Heyman extends masonry arch theory2554.7.6Heyman extends masonry arch theory2664.10.1Wedge theory2674.10.1Wedge theory2684.10.1Utimate load theory for masonry arches as an object in historical theory of structures2694.10.3Line of thrust theory and elastic theory for masonry arches2705The history of earth pressure theory2715.1Retaining walls for fortifications <tr< td=""><td>225</td><td>4.5</td><td>The line of thrust theory</td></tr<>	225	4.5	The line of thrust theory
2304.5.3The search for the true line of thrust2324.6.1The breakthrough for elastic theory2334.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2424.6.5.2Doubts2434.6.5.3Tests on models2444.6.7Ultimate load theory for masonry arches2454.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch bridges2544.7.6Heyman extends masonry arch theory2584.8The finite element method2604.9The studies of Holzer2614.10.1Wedge theory2624.10.2Collapse mechanism analysis and voussoir rotation theory2634.10.2Collapse mechanism analysis and voussoir rotation theory2644.10.1Line of thrust theory and elastic theory for masonry arches2765.1Retaining walls for fortifications2775.2Earth pressure theory as an object o	225	4.5.1	Prelude
2324.6The breakthrough for elastic theory2334.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch bridges2534.7Heyman extends masonry arch theory2544.7The finite element method2524.9The studies of Holzer2634.10.1Wedge theory2644.10.1Wedge theory2654.10.2Collapse mechanism analysis and voussoir rotation theory2664.10.3Line of thrust theory and elastic theory for masonry arches2705The history of earth pressure theory2725.1Retaining walls for fortifications2735.2.1Bullet2745.2.1.1Bullet2755.	228	4.5.2	Gerstner
2324.6.1The dualism of masonry arch and elastic arch theory under Navier2334.6.2Two steps forwards, one back2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch bridges2534.7Heyman extends masonry arch theory2544.10On the epistemological status of masonry arch theories2644.10.1Wedge theory2654.10.2Collapse mechanism analysis and voussoir rotation theory2664.10.3Line of thrust theory and elastic theory for masonry arches2674.10.4Ultimate load theory for masonry arches as an object in historical theory of structures2684.10.5The finite element analysis of masonry arches2705Retaining walls for fortifications2715.2.1Retaining walls for fortifications2725.2.1.1Bullet273<	230	4.5.3	The search for the true line of thrust
2334.6.2Two steps forwards, one back2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arch bridges2524.7.5Analysis of masonry arch theory2584.8The finite element method2604.9The studies of Holzer2614.10On the epistemological status of masonry arch theories2624.10.1Wedge theory2634.10.2Collapse mechanism analysis and voussoir rotation theory2644.10.1Ultimate load theory for masonry arches as an object in historical theory of structures2654.10.5The history of earth pressure theory2765.1Retaining walls for fortifications2775.2.1In the beginning there was the inclined plane2785.2.1.2Gautier2795.2.1.3Couplet2795.2.1.4Further approaches	232	4.6	The breakthrough for elastic theory
2344.6.3From Poncelet to Winkler2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2544.7.6Heyman extends masonry arch theory2584.8The finite element method2604.9The studies of Holzer2614.10.1Wedge theory2624.10.2Collapse mechanism analysis and voussoir rotation theory2634.10.2Collapse mechanism analysis and voussoir rotation theory2644.10.1Ultimate load theory for masonry arches as an object in historical theory of structures2654.10.5The finite element analysis of masonry arches2705Retaining walls for fortifications2715.2Earth pressure theory as an object of military engineering2725.2.1.1Bullet2735.2.1.2Gautier2745.2.1.3Gouplet2755.2.1.4Further approaches	232	4.6.1	The dualism of masonry arch and elastic arch theory under Navier
2394.6.4A step back2404.6.5The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2544.7.6Heyman extends masonry arch theory2584.8The finite element method2604.9The studies of Holzer2614.10On the epistemological status of masonry arch theories2624.10.1Wedge theory2634.10.2Collapse mechanism analysis and voussoir rotation theory2644.10.3Line of thrust theory and elastic theory for masonry arches2654.10.4Ultimate load theory for masonry arches as an object in historical theory of structures2684.10.5The history of earth pressure theory2725.1Retaining walls for fortifications2755.2Earth pressure theory as an object of military engineering2765.2.1.1Bullet2775.2.1.1Bullet2785.2.1.2Gautier2795.2.1.4Further approaches	233	4.6.2	Two steps forwards, one back
2404.6.5.The masonry arch is nothing, the elastic arch is everything – the triumph of elastic arch theory over masonry arch theory2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2534.7.6Heyman extends masonry arch theory2544.7.6Heyman extends masonry arch theory2584.8The finite element method2604.9The studies of Holzer2614.10.1Wedge theory2624.10.2Collapse mechanism analysis and voussoir rotation theory2634.10.2Collapse mechanism analysis and voussoir rotation theory2644.10.4Ultimate load theory for masonry arches as an object in historical theory of structures2654.10.5The history of earth pressure theory2705.2Earth pressure theory as an object of military engineering2715.2.1.1Bullet2725.2.1.1Bullet2735.2.1.1Bullet2745.2.1.2Gautier2755.2.1.3Couplet	234	4.6.3	From Poncelet to Winkler
of elastic arch theory over masonry arch theory 4.6.5.1 Grandes Voûtes 4.6.5.2 Doubts 4.6.5.3 Tests on models 4.7 Ultimate load theory for masonry arches 4.7 Ultimate load theory for masonry arches 4.7.1 Of cracks and the true line of thrust in the masonry arch 5.7 Analysis of masonry arch bridges 4.7.5 Analysis of masonry arch bridges 4.7.6 Heyman extends masonry arch theory 5.8 4.8 The finite element method 6.4 4.10 On the epistemological status of masonry arch theories 6.4 4.10.1 Wedge theory 6.5 4.10.2 Collapse mechanism analysis and voussoir rotation theory 6.6 4.10.3 Line of thrust theory and elastic theory for masonry arches 6.4 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 6.5 4.10.5 The finite element analysis of masonry arches 6.7 5.2 Earth pressure theory 6.5 1 Retaining walls for fortifications 6.7 5.2 1.1 In the beginning there was the inclined plane 6.7 5.2.1.1 Bullet 6.7 5.2.1.2 Gautier 6.7 5.2.1.3 Couplet 6.7 5.2.1.4 Further approaches	239	4.6.4	A step back
2414.6.5.1Grandes Voûtes2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2544.7.6Heyman extends masonry arch theory2554.8The finite element method2624.9The studies of Holzer2644.10On the epistemological status of masonry arch theories2644.10.1Wedge theory2654.10.2Collapse mechanism analysis and voussoir rotation theory2664.10.3Line of thrust theory and elastic theory for masonry arches2674.10.4Ultimate load theory for masonry arches as an object in historical theory of structures2684.10.5The history of earth pressure theory2705.1Retaining walls for fortifications2715.2Earth pressure theory as an object of military engineering2765.2.1.1In the beginning there was the inclined plane2775.2.1.1Bullet2785.2.1.2Gautier2795.2.1.3Couplet2795.2.1.4Further approaches	240	4.6.5	The masonry arch is nothing, the elastic arch is everything – the triumph
2444.6.5.2Doubts2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2564.7.6Heyman extends masonry arch theory2584.8The finite element method2604.9The studies of Holzer2614.10.1Wedge theory2624.10.2Collapse mechanism analysis and voussoir rotation theory2634.10.3Line of thrust theory and elastic theory for masonry arches2644.10.4Ultimate load theory for masonry arches as an object in historical theory of structures2684.10.5The finite element analysis of masonry arches2705The history of earth pressure theory2725.1Retaining walls for fortifications2755.2Earth pressure theory as an object of military engineering2765.2.1In the beginning there was the inclined plane2775.2.1.1Bullet2785.2.1.2Gautier2795.2.1.3Couplet2795.2.1.4Further approaches			of elastic arch theory over masonry arch theory
2454.6.5.3Tests on models2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2564.7.6Heyman extends masonry arch theory2584.8The finite element method2624.9The studies of Holzer2644.10On the epistemological status of masonry arch theories2644.10.1Wedge theory2654.10.2Collapse mechanism analysis and voussoir rotation theory2664.10.3Line of thrust theory and elastic theory for masonry arches2674.10.4Ultimate load theory for masonry arches as an object in historical theory of structures2684.10.5The finite element analysis of masonry arches2705Retaining walls for fortifications2715.2Earth pressure theory as an object of military engineering2725.2Earth pressure theory as an object of military engineering2735.2.1.1Bullet2745.2.1.2Gautier2755.2.1.3Couplet2765.2.1.4Further approaches	241	4.6.5.1	Grandes Voûtes
2474.7Ultimate load theory for masonry arches2484.7.1Of cracks and the true line of thrust in the masonry arch2504.7.2Masonry arch failures2504.7.3The maximum load principles of the ultimate load theory for masonry arches2514.7.4The safety of masonry arches2524.7.5Analysis of masonry arch bridges2564.7.6Heyman extends masonry arch theory2584.8The finite element method2624.9The studies of Holzer2644.10On the epistemological status of masonry arch theories2644.10.1Wedge theory2654.10.2Collapse mechanism analysis and voussoir rotation theory2664.10.3Line of thrust theory and elastic theory for masonry arches2674.10.4Ultimate load theory for masonry arches as an object in historical theory of structures2684.10.5The finite element analysis of masonry arches2705Retaining walls for fortifications2715.2Earth pressure theory as an object of military engineering2725.2Earth pressure theory as an object of military engineering2735.2.1.1Bullet2745.2.1.2Gautier2755.2.1.2Gautier2765.2.1.3Couplet2775.2.1.4Further approaches	244	4.6.5.2	Doubts
 47.1 Of cracks and the true line of thrust in the masonry arch 47.2 Masonry arch failures 47.3 The maximum load principles of the ultimate load theory for masonry arches 47.4 The safety of masonry arches 47.5 Analysis of masonry arch bridges 47.6 Heyman extends masonry arch theory 48 The finite element method 49 The studies of Holzer 410 On the epistemological status of masonry arch theories 410.1 Wedge theory 410.2 Collapse mechanism analysis and voussoir rotation theory 410.3 Line of thrust theory and elastic theory for masonry arches 410.4 Ultimate load theory for masonry arches as an object in historical theory of structures 410.5 The finite element analysis of masonry arches 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 	245	4.6.5.3	Tests on models
 4.7.2 Masonry arch failures 4.7.3 The maximum load principles of the ultimate load theory for masonry arches 4.7.4 The safety of masonry arches 4.7.5 Analysis of masonry arch bridges 4.7.6 Heyman extends masonry arch theory 4.8 The finite element method 4.9 The studies of Holzer 4.10 On the epistemological status of masonry arch theories 4.10.1 Wedge theory 4.10.2 Collapse mechanism analysis and voussoir rotation theory 4.10.3 Line of thrust theory and elastic theory for masonry arches 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 4.10.5 The finite element analysis of masonry arches 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 	247	4.7	Ultimate load theory for masonry arches
250 4.7.3 The maximum load principles of the ultimate load theory for masonry arches 251 4.7.4 The safety of masonry arches 252 4.7.5 Analysis of masonry arch bridges 253 4.7.6 Heyman extends masonry arch theory 254 4.7.6 The finite element method 255 4.9 The studies of Holzer 256 4.10 On the epistemological status of masonry arch theories 257 4.10.1 Wedge theory 258 4.10.2 Collapse mechanism analysis and voussoir rotation theory 259 4.10.2 Line of thrust theory and elastic theory for masonry arches 250 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 250 5 The finite element analysis of masonry arches 250 5.1 Retaining walls for fortifications 251 5.2 Earth pressure theory as an object of military engineering 250 5.2.1 In the beginning there was the inclined plane 251 5.2.1.1 Bullet 252 5.2.1.2 Gautier 253 5.2.1.3 Couplet 254 5.2.1.4 Further approaches	248	4.7.1	Of cracks and the true line of thrust in the masonry arch
250 4.7.3 The maximum load principles of the ultimate load theory for masonry arches 251 4.7.4 The safety of masonry arches 252 4.7.5 Analysis of masonry arch bridges 253 4.7.6 Heyman extends masonry arch theory 254 4.7.6 The finite element method 255 4.9 The studies of Holzer 256 4.10 On the epistemological status of masonry arch theories 257 4.10.1 Wedge theory 258 4.10.2 Collapse mechanism analysis and voussoir rotation theory 259 4.10.2 Line of thrust theory and elastic theory for masonry arches 250 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 250 5 The finite element analysis of masonry arches 250 5.1 Retaining walls for fortifications 251 5.2 Earth pressure theory as an object of military engineering 250 5.2.1 In the beginning there was the inclined plane 251 5.2.1.1 Bullet 252 5.2.1.2 Gautier 253 5.2.1.3 Couplet 254 5.2.1.4 Further approaches	250	4.7.2	Masonry arch failures
 4.7.4 The safety of masonry arches 4.7.5 Analysis of masonry arch bridges 4.7.6 Heyman extends masonry arch theory 4.8 The finite element method 4.9 The studies of Holzer 4.10 On the epistemological status of masonry arch theories 4.10.1 Wedge theory 4.10.2 Collapse mechanism analysis and voussoir rotation theory 4.10.3 Line of thrust theory and elastic theory for masonry arches 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 4.10.5 The finite element analysis of masonry arches 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 	250	4.7.3	The maximum load principles of the ultimate load theory for masonry
 4.7.5 Analysis of masonry arch bridges 4.7.6 Heyman extends masonry arch theory 4.8 The finite element method 4.9 The studies of Holzer 4.10 On the epistemological status of masonry arch theories 4.10.1 Wedge theory 4.10.2 Collapse mechanism analysis and voussoir rotation theory 4.10.3 Line of thrust theory and elastic theory for masonry arches 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 4.10.5 The finite element analysis of masonry arches 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1.1 In the beginning there was the inclined plane 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 			arches
 4.7.6 Heyman extends masonry arch theory 4.8 The finite element method 4.9 The studies of Holzer 4.10 On the epistemological status of masonry arch theories 4.10.1 Wedge theory 4.10.2 Collapse mechanism analysis and voussoir rotation theory 4.10.3 Line of thrust theory and elastic theory for masonry arches 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 4.10.5 The finite element analysis of masonry arches 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 	251	4.7.4	The safety of masonry arches
 4.8 The finite element method 262 4.9 The studies of Holzer 264 4.10 On the epistemological status of masonry arch theories 264 4.10.1 Wedge theory 265 4.10.2 Collapse mechanism analysis and voussoir rotation theory 266 4.10.3 Line of thrust theory and elastic theory for masonry arches 267 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 268 4.10.5 The finite element analysis of masonry arches 270 5 The history of earth pressure theory 272 5.1 Retaining walls for fortifications 275 5.2 Earth pressure theory as an object of military engineering 276 5.2.1 In the beginning there was the inclined plane 277 5.2.1.1 Bullet 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	252	4.7.5	Analysis of masonry arch bridges
 262 4.9 The studies of Holzer 264 4.10 On the epistemological status of masonry arch theories 264 4.10.1 Wedge theory 265 4.10.2 Collapse mechanism analysis and voussoir rotation theory 266 4.10.3 Line of thrust theory and elastic theory for masonry arches 267 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 268 4.10.5 The finite element analysis of masonry arches 270 5 The history of earth pressure theory 272 5.1 Retaining walls for fortifications 275 5.2 Earth pressure theory as an object of military engineering 276 5.2.1 In the beginning there was the inclined plane 277 5.2.1.1 Bullet 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	256	4.7.6	
 264 4.10 On the epistemological status of masonry arch theories 264 4.10.1 Wedge theory 265 4.10.2 Collapse mechanism analysis and voussoir rotation theory 266 4.10.3 Line of thrust theory and elastic theory for masonry arches 267 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 268 4.10.5 The finite element analysis of masonry arches 270 5 Retaining walls for fortifications 275 5.2 Earth pressure theory as an object of military engineering 276 5.2.1 In the beginning there was the inclined plane 277 5.2.1.1 Bullet 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	258	4.8	The finite element method
 264 4.10.1 Wedge theory 265 4.10.2 Collapse mechanism analysis and voussoir rotation theory 266 4.10.3 Line of thrust theory and elastic theory for masonry arches 267 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures 268 4.10.5 The finite element analysis of masonry arches 270 5 The history of earth pressure theory 272 5.1 Retaining walls for fortifications 275 5.2 Earth pressure theory as an object of military engineering 276 5.2.1 In the beginning there was the inclined plane 277 5.2.1.1 Bullet 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	262	4.9	The studies of Holzer
 4.10.2 Collapse mechanism analysis and voussoir rotation theory 4.10.3 Line of thrust theory and elastic theory for masonry arches 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures The finite element analysis of masonry arches 5 The history of earth pressure theory 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 	264	4.10	On the epistemological status of masonry arch theories
 4.10.3 Line of thrust theory and elastic theory for masonry arches 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures The finite element analysis of masonry arches 5 The history of earth pressure theory 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 	264	4.10.1	
 4.10.3 Line of thrust theory and elastic theory for masonry arches 4.10.4 Ultimate load theory for masonry arches as an object in historical theory of structures The finite element analysis of masonry arches 5 The history of earth pressure theory 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 	265	4.10.2	Collapse mechanism analysis and voussoir rotation theory
of structures 268 4.10.5 The finite element analysis of masonry arches 270 5 The history of earth pressure theory 272 5.1 Retaining walls for fortifications 275 5.2 Earth pressure theory as an object of military engineering 276 5.2.1 In the beginning there was the inclined plane 277 5.2.1.1 Bullet 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches	266	4.10.3	Line of thrust theory and elastic theory for masonry arches
 268 4.10.5 The finite element analysis of masonry arches 270 5 The history of earth pressure theory 272 5.1 Retaining walls for fortifications 275 5.2 Earth pressure theory as an object of military engineering 276 5.2.1 In the beginning there was the inclined plane 277 5.2.1.1 Bullet 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	267	4.10.4	Ultimate load theory for masonry arches as an object in historical theory
The history of earth pressure theory 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 7.5.2.1.4 Further approaches			of structures
The history of earth pressure theory 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 7.5.2.1.4 Further approaches	268	4.10.5	The finite element analysis of masonry arches
 5.1 Retaining walls for fortifications 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 			, , ,
 5.2 Earth pressure theory as an object of military engineering 5.2.1 In the beginning there was the inclined plane 5.2.1.1 Bullet 5.2.1.2 Gautier 5.2.1.3 Couplet 5.2.1.4 Further approaches 	270	5	The history of earth pressure theory
 276 5.2.1 In the beginning there was the inclined plane 277 5.2.1.1 Bullet 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	272	5.1	Retaining walls for fortifications
 277 5.2.1.1 Bullet 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	275	5.2	Earth pressure theory as an object of military engineering
 278 5.2.1.2 Gautier 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	276	5.2.1	In the beginning there was the inclined plane
 278 5.2.1.3 Couplet 279 5.2.1.4 Further approaches 	277	5.2.1.1	Bullet
279 5.2.1.4 Further approaches	278	5.2.1.2	Gautier
	278	5.2.1.3	Couplet
	279	5.2.1.4	Further approaches
280 5.2.1.5 Friction reduces earth pressure	280	5.2.1.5	Friction reduces earth pressure

- 283 5.2.2 From inclined plane to wedge theory
- 286 5.2.3 Charles Augustin Coulomb
- 287 5.2.3.1 Manifestations of adhesion
- 288 5.2.3.2 Failure behaviour of masonry piers
- 289 5.2.3.3 The transition to earth pressure theory
- 290 5.2.3.4 Active earth pressure
- 294 5.2.3.5 Passive earth pressure
- 294 5.2.3.6 Design
- 295 5.2.4 A magazine for engineering officers
- 297 5.3 Modifications to Coulomb earth pressure theory
- 297 5.3.1 The trigonometrisation of earth pressure theory
- 297 5.3.1.1 Prony
- 298 5.3.1.2 Mayniel
- 299 5.3.1.3 Français, Audoy and Navier
- 301 5.3.1.4 Martony de Köszegh
- 303 5.3.2 The geometric way
- 304 5.3.2.1 Jean-Victor Poncelet
- 305 5.3.2.2 Hermann Scheffler's criticism of Poncelet
- 306 5.3.2.3 Karl Culmann
- 308 5.3.2.4 Georg Rebhann
- 310 5.3.2.5 Compelling contradictions
- 311 5.4 The contribution of continuum mechanics
- 313 5.4.1 The hydrostatic earth pressure model
- 314 5.4.2 The new earth pressure theory
- 316 5.4.2.1 Carl Holtzmann
- 316 5.4.2.2 Rankine's stroke of genius
- 317 5.4.2.3 Emil Winkler
- 319 5.4.2.4 Otto Mohr
- 321 5.5 Earth pressure theory from 1875 to 1900
- 322 5.5.1 Coulomb or Rankine?
- 323 5.5.2 Earth pressure theory in the form of masonry arch theory
- 325 5.5.3 Earth pressure theory à la française
- 328 5.5.4 Kötter's mathematical earth pressure theory
- 331 5.6 Experimental earth pressure research
- 331 5.6.1 The precursors of experimental earth pressure research
- 332 5.6.1.1 Cramer
- 332 5.6.1.2 Baker
- 333 5.6.1.3 Donath and Engels
- 334 5.6.2 A great moment in subsoil research
- 336 5.6.3 Earth pressure tests at the testing institute for the statics of structures at Berlin Technical University
- 339 5.6.4 The merry-go-round of discussions of errors
- 341 5.6.5 The Swedish school of earthworks
- 343 5.6.6 The emergence of soil mechanics
- 344 5.6.6.1 Three lines of development
- 345 5.6.6.2 The disciplinary configuration of soil mechanics
- 345 5.6.6.3 The contours of phenomenological earth pressure theory

340	3.7	Earth pressure theory in the discipline-formation period
		of geotechnical engineering
351	5.7.1	Terzaghi
352	5.7.2	Rendulic
352	5.7.3	Ohde
354	5.7.4	Errors and confusion
355	5.7.5	A hasty reaction in print
356	5.7.6	Foundations + soil mechanics = geotechnical engineering
356	5.7.6.1	The civil engineer as soldier
358	5.7.6.2	Addendum
360	5.8	Earth pressure theory in the consolidation period of geotechnical engineering
360	5.8.1	New subdisciplines in geotechnical engineering
361	5.8.2	Determining earth pressure in practical theory of structures
362	5.8.2.1	The modified Culmann E line
363	5.8.2.2	New findings regarding passive earth pressure
365	5.9	Earth pressure theory in the integration period of geotechnical
303	3.7	engineering
366	5.9.1	Computer-assisted earth pressure calculations
367	5.9.2	Geotechnical continuum models
371	5.9.3	The art of estimating
373	5.9.4	The history of geotechnical engineering as an object of construction
		history
376	6	The beginnings of a theory of structures
376 378	6 6.1	The beginnings of a theory of structures What is the theory of strength of materials?
378	6.1	What is the theory of strength of materials?
378	6.1	What is the theory of strength of materials? On the state of development of theory of structures and strength
378 381	6.1 6.2	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance
378 381 387	6.16.26.3	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue
378 381 387 387	6.1 6.2 6.3 6.3.1	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day
378 381 387 387 390	6.1 6.2 6.3 6.3.1 6.3.2	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day
378 381 387 387 390 396	6.1 6.2 6.3 6.3.1 6.3.2 6.4	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750
378 381 387 387 390 396 404	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century
378 381 387 387 390 396 404 405	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory
378 381 387 387 390 396 404 405 407	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner
378 381 387 387 390 396 404 405 407 411	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering
378 381 387 387 390 396 404 405 407 411 412	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.3.1	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering Gerstner's analysis and synthesis of loadbearing systems
378 381 387 387 390 396 404 405 407 411 412 416	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.3.1 6.5.3.2	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering Gerstner's analysis and synthesis of loadbearing systems Gerstner's method of structural design
378 381 387 387 390 396 404 405 407 411 412 416 417	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.3.1 6.5.3.2 6.5.3.3	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering Gerstner's analysis and synthesis of loadbearing systems Gerstner's method of structural design Einleitung in die statische Baukunst as a textbook for analysis
378 381 387 387 390 396 404 405 407 411 412 416 417	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.3.1 6.5.3.2 6.5.3.3	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering Gerstner's analysis and synthesis of loadbearing systems Gerstner's method of structural design Einleitung in die statische Baukunst as a textbook for analysis Four comments on the significance of Gerstner's Einleitung in die
378 381 387 387 390 396 404 405 407 411 412 416 417	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.3.1 6.5.3.2 6.5.3.3 6.5.4	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering Gerstner's analysis and synthesis of loadbearing systems Gerstner's method of structural design Einleitung in die statische Baukunst as a textbook for analysis Four comments on the significance of Gerstner's Einleitung in die statische Baukunst for theory of structures
378 381 387 387 390 396 404 405 407 411 412 416 417 417	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.3.1 6.5.3.2 6.5.3.3 6.5.4	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering Gerstner's analysis and synthesis of loadbearing systems Gerstner's method of structural design Einleitung in die statische Baukunst as a textbook for analysis Four comments on the significance of Gerstner's Einleitung in die statische Baukunst for theory of structures The formation of a theory of structures: Eytelwein and Navier
378 381 387 387 390 396 404 405 407 411 412 416 417 417	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.3.1 6.5.3.2 6.5.3.3 6.5.4	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering Gerstner's analysis and synthesis of loadbearing systems Gerstner's method of structural design Einleitung in die statische Baukunst as a textbook for analysis Four comments on the significance of Gerstner's Einleitung in die statische Baukunst for theory of structures The formation of a theory of structures: Eytelwein and Navier Navier Eytelwein The analysis of the continuous beam according to Eytelwein
378 381 387 390 396 404 405 407 411 412 416 417 417 418 419 422	6.1 6.2 6.3 6.3.1 6.3.2 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.3.1 6.5.3.2 6.5.3.3 6.5.4 6.6 6.6.1 6.6.2	What is the theory of strength of materials? On the state of development of theory of structures and strength of materials in the Renaissance Galileo's Dialogue First day Second day Developments in strength of materials up to 1750 Civil engineering at the close of the 18th century The completion of beam theory Franz Joseph Ritter von Gerstner Introduction to structural engineering Gerstner's analysis and synthesis of loadbearing systems Gerstner's method of structural design Einleitung in die statische Baukunst as a textbook for analysis Four comments on the significance of Gerstner's Einleitung in die statische Baukunst for theory of structures The formation of a theory of structures: Eytelwein and Navier Navier Eytelwein

425	6.6.3.1	The continuous beam in Eytelwein's Statik fester Körper
429	6.6.3.2	The continuous beam in Navier's Résumé des Leçons
432	6.7	Adoption of Navier's analysis of the continuous beam
436	7	The discipline-formation period of theory of structures
438	7.1	Clapeyron's contribution to the formation of the classical engineering
		sciences
438	7.1.1	Les polytechniciens: the fascinating revolutionary élan in post-revolution
		France
440	7.1.2	Clapeyron and Lamé in St. Petersburg (1820 – 1831)
443	7.1.3	Clapeyron's formulation of the energy doctrine of the classical
		engineering sciences
445	7.1.4	Bridge-building and the theorem of three moments
448	7.2	The completion of the practical beam theory
451	7.3	From graphical statics to graphical analysis
452	7.3.1	The founding of graphical statics by Culmann
454	7.3.2	Two graphical integration machines
455	7.3.3	Rankine, Maxwell, Cremona and Bow
457	7.3.4	Differences between graphical statics and graphical analysis
459	7.3.5	The breakthrough for graphical analysis
460	7.3.5.1	Graphical analysis of masonry vaults and domes
462	7.3.5.2	Graphical analysis in engineering works
465	7.4	The classical phase of theory of structures
465	7.4.1	Winkler's contribution
468	7.4.1.1	The elastic theory foundation to theory of structures
471	7.4.1.2	The theory of the elastic arch as a foundation for bridge-building
476	7.4.2	The beginnings of the force method
476	7.4.2.1	Contributions to the theory of statically indeterminate trussed
		frameworks
481	7.4.2.2	From the trussed framework theory to the general theory of trusses
491	7.4.3	Loadbearing structure as kinematic machine
492	7.4.3.1	Trussed framework as machine
493	7.4.3.2	The theoretical kinematics of Reuleaux and the Dresden school
		of kinematics
495	7.4.3.3	Kinematic or energy doctrine in theory of structures?
499	7.4.3.4	The Pyrrhic victory of the energy doctrine in theory of structures
500	7.5	Theory of structures at the transition from the discipline-formation
		to the consolidation period
500	7.5.1	Castigliano
504	7.5.2	The fundamentals of classical theory of structures
508	7.5.3	Resumption of the dispute about the fundamentals of classical theory
		of structures ,
508	7.5.3.1	The cause
509	7.5.3.2	The dispute between the 'seconds'
510	7.5.3.3	The dispute surrounding the validity of the theorems of Castigliano
516	7.5.4	The validity of Castigliano's theorems

517	7.6	Lord Rayleigh's <i>The Theory of Sound</i> and Kirpitchev's fundamentals
		of classical theory of structures
517	7.6.1	Rayleigh coefficient and Ritz coefficient
520	7.6.2	Kirpitchev's congenial adaptation
522	7.7	The Berlin school of theory of structures
523	7.7.1	The notion of the scientific school
524	7.7.2	The completion of classical theory of structures by Müller-Breslau
526	7.7.3	Classical theory of structures usurps engineering design
530	7.7.4	Müller-Breslau's students
531	7.7.4.1	August Hertwig
534	7.7.4.2	August Hertwig's successors
538	8	From construction with iron to modern structural steelwork
541	8.1	Torsion theory in iron construction and theory of structures
		from 1850 to 1900
541	8.1.1	Saint-Venant's torsion theory
545	8.1.2	The torsion problem in Weisbach's <i>Principles</i>
547	8.1.3	Bach's torsion tests
550	8.1.4	The adoption of torsion theory in classical theory of structures
553	8.2	Crane-building at the focus of mechanical and electrical engineering,
		steel construction and theory of structures
553	8.2.1	Rudolph Bredt – known yet unknown
554	8.2.2	The Ludwig Stuckenholz company in Wetter a. d. Ruhr
555	8.2.2.1	Bredt's rise to become the master of crane-building
559	8.2.2.2	Crane types of the Ludwig Stuckenholz company
564	8.2.3	Bredt's scientific-technical publications
565	8.2.3.1	Bredt's testing machine
566	8.2.3.2	The principle of separating the functions in crane-building
567	8.2.3.3	Crane hooks
567	8.2.3.4	Struts
567	8.2.3.5	Foundation anchors
568	8.2.3.6	Pressure cylinders
568	8.2.3.7	Curved bars
568	8.2.3.8	Elastic theory
569	8.2.3.9	The teaching of engineers
570	8.2.3.10	Torsion theory
571	8.2.4	Heavy engineering adopts classical theory of structures
575	8.3	Torsion theory in the consolidation period of theory of structures (1900 – 1950)
575	8.3.1	The introduction of an engineering science concept: the torsion constant
577	8.3.2	The discovery of the shear centre
578	8.3.2.1	Carl Bach
579	8.3.2.2	Louis Potterat
579	8.3.2.3	Adolf Eggenschwyler
580	8.3.2.4	Robert Maillart
582	8.3.2.5	Rearguard actions in the debate surrounding the shear centre

582	8.3.3	Torsion theory in structural steelwork from 1925 to 1950
585	8.3.4	Summary
585	8.4	Searching for the true buckling theory in steel construction
585	8.4.1	The buckling tests of the DStV
587	8.4.1.1	The world's largest testing machine
588	8.4.1.2	The perfect buckling theory on the basis of elastic theory
590	8.4.2	German State Railways and the joint technical-scientific work
		in structural steelwork
590	8.4.2.1	Standardising the codes of practice for structural steelwork
592	8.4.2.2	The founding of the German Committee for Structural Steelwork (DASt)
593	8.4.3	Excursion: the "Olympic Games" for structural engineering
595	8.4.4	A paradigm change in buckling theory
596	8.4.5	The standardisation of the new buckling theory in the German stability standard DIN 4114
599	8.5	Steelwork and steelwork science from 1925 to 1975
600	8.5.1	From the one-dimensional to the two-dimensional structure
600	8.5.1.1	The theory of the effective width
603	8.5.1.2	Constructional innovations in German bridge-building during the 1930s
606	8.5.1.3	The theory of the beam grid
608	8.5.1.4	The orthotropic plate as a patent
609	8.5.1.5	Structural steelwork borrows from reinforced concrete:
		Huber's plate theory
612	8.5.1.6	The Guyon-Massonnet method
613	8.5.1.7	The theory dynamic in steelwork science in the 1950s and 1960s
615	8.5.2	The rise of steel-concrete composite construction
616	8.5.2.1	Composite columns
617	8.5.2.2	Composite beams
621	8.5.2.3	Composite bridges
628	8.5.3	Lightweight steel construction
632	8.5.4	Steel and glass – best friends
637	8.6	Eccentric orbits – the disappearance of the centre
640	9	Member analysis conquers the third dimension:
		the spatial framework
641	9.1	The emergence of the theory of spatial frameworks
644	9.1.1	The original dome to the Reichstag (German parliament building)
645	9.1.2	Foundation of the theory of spatial frameworks by August Föppl
649	9.1.3	Integration of spatial framework theory into classical theory of structures
652	9.2	Spatial frameworks in an age of technical reproducibility
653	9.2.1	Alexander Graham Bell
654	9.2.2	Vladimir Grigorievich Shukhov
655	9.2.3	Walther Bauersfeld and Franz Dischinger
656	9.2.4	Richard Buckminster Fuller
657	9.2.5	Max Mengeringhausen

658 9.3 Dialectic synthesis of individual structural composition and large-scale production 659 9.3.1 The MERO system and the composition law for spatial frameworks 661 9.3.2 Spatial frameworks and computers 664 10 Reinforced concrete's influence on theory of structures 666 10.1 The first design methods in reinforced concrete construction 666 10.1.1 The beginnings of reinforced concrete construction 668 10.1.2 From the German Monier patent to the *Monier-Broschüre* 671 10.1.3 The Monier-Broschüre 10.1.3.1 The new type of structural-constructional quality offered 672 by the Monier system 673 10.1.3.2 The applications of the Monier system 675 10.1.3.3 The engineering science principles of the Monier system 679 10.2 Reinforced concrete revolutionises the building industry 681 10.2.1 The fate of the Monier system 682 10.2.2 The end of the system period: steel + concrete = reinforced concrete 684 10.2.2.1 The Napoleon of reinforced concrete: François Hennebique 686 10.2.2.2 The founding father of rationalism in reinforced concrete: Paul Christophe 691 10.2.2.3 The completion of the triad 696 10.3 Theory of structures and reinforced concrete 697 10.3.1 New types of loadbearing structure in reinforced concrete 698 10.3.1.1 Reinforced concrete gains emancipation from structural steelwork: the rigid frame 702 10.3.1.2 Reinforced concrete takes its first steps into the second dimension: out-of-plane-loaded structures 717 10.3.1.3 The first synthesis 719 10.3.2 The structural-constructional self-discovery of reinforced concrete 720 10.3.2.1 In-plane-loaded elements and folded plates 722 10.3.2.2 Reinforced concrete shells 10.3.2.3 The second synthesis 757 760 10.3.2.4 Of the power of formalised theory 10.4 Prestressed concrete: "Une révolution dans l'art de bâtir" (Freyssinet) 762 10.4.1 763 Leonhardt's Prestressed Concrete. Design and Construction 10.4.2 766 The first prestressed concrete standard 767 10.4.3 Prestressed concrete standards in the GDR 769 10.4.4 The unstoppable rise of prestressed concrete reflected in Beton- und Stahlbetonbau 770 10.5 Paradigm change in reinforced concrete design in the Federal Republic of Germany, too 10.6 Revealing the invisible: reinforced concrete design with truss models 772 772 10.6.1 The trussed framework model of François Hennebique The trussed framework model of Emil Mörsch 773 10.6.2 775 A picture is worth 1,000 words: stress patterns for plane plate and shell 10.6.3 structures

		reinforced concrete
780	11	The consolidation period of theory of structures
781	11.1	The relationship between text, image and symbol in theory of structures
783	11.1.1	The historical stages in the idea of formalisation
790	11.1.2	The structural engineer – a manipulator of symbols?
791	11.2	The development of the displacement method
792	11.2.1	The contribution of the mathematical elastic theory
793	11.2.1.1	Elimination of stresses or displacements? That is the question.
794	11.2.1.2	An element from the ideal artefacts of mathematical elastic theory:
		the elastic truss system
795	11.2.2	From pin-jointed trussed framework to rigid-jointed frame
795	11.2.2.1	A real engineering artefact: the iron trussed framework with riveted joints
797	11.2.2.2	The theory of secondary stresses
799	11.2.3	From trussed framework to rigid frame
800	11.2.3.1	Thinking in deformations
802	11.2.3.2	The Vierendeel girder
803	11.2.4	The displacement method gains emancipation from trussed
		framework theory
805	11.2.4.1	Axel Bendixsen
806	11.2.4.2	George Alfred Maney
806	11.2.4.3	Willy Gehler
807	11.2.4.4	Asger Ostenfeld
808	11.2.4.5	Peter L. Pasternak
808	11.2.4.6	Ludwig Mann
809	11.2.5	The displacement method during the invention phase of theory
		of structures
810	11.3	The rationalisation movement in theory of structures
811	11.3.1	The prescriptive use of symbols in theory of structures
814	11.3.2	Rationalisation of statically indeterminate calculations
815	11.3.2.1	Statically indeterminate main systems
816	11.3.2.2	Orthogonalisation methods
817	11.3.2.3	Specific methods from the theory of sets of linear equations
818	11.3.2.4	Structural iteration methods
821	11.3.3	The dual nature of theory of structures
824	11.4	Konrad Zuse and the automation of structural calculations
824	11.4.1	Schematisation of statically indeterminate calculations
826	11.4.1.1	Schematic calculation procedure
829	11.4.1.2	The first step to the computing plan
832	11.4.2	The "engineer's calculating machine"
834	11.5	Matrix formulation
834	11.5.1	Matrix formulation in mathematics and theoretical physics
835	11.5.2	Tensor and matrix algebra in the fundamental engineering science
		disciplines
838	11.5.3	The integration of matrix formulation into engineering mathematics
841	11.5.4	A structural analysis matrix method: the carry-over method

777 10.6.4 The concept of the truss model: steps towards holistic design in

846	12	The development and establishment of computational statics
847	12.1	"The computer shapes the theory" (Argyris) – the historical roots
		of the finite element method
850	12.1.1	Truss models for elastic continua
850	12.1.1.1	Kirsch's space truss model
851	12.1.1.2	Trussed framework models for elastic plates
853	12.1.1.3	The origin of the gridwork method
855	12.1.1.4	First computer-aided structural analyses in the automotive industry
859	12.1.2	Modularisation and discretisation of aircraft structures
859	12.1.2.1	From lattice box girder to cell tube and shear field layout
866	12.1.2.2	High-speed aerodynamics, discretisation of the cell tube and matrix theory
869	12.2	The matrix algebra reformulation of structural mechanics
870	12.2.1	The founding of modern structural mechanics
873	12.2.2	
873	12.2.2.1	Switzerland
875	12.2.2.2	United Kingdom
877	12.2.2.3	Federal Republic of Germany
880	12.3	FEM – formation of a general technology of engineering science theory
881	12.3.1	The classical publication of a non-classical method
884	12.3.2	The heuristic potential of FEM: the direct stiffness method
887	12.4	The founding of FEM through variational principles
888	12.4.1	The variational principle of Dirichlet and Green
888	12.4.1.1	A simple example: the axially loaded elastic extensible bar
890	12.4.1.2	The Göttingen school around Felix Klein
891	12.4.2	The first stage of the synthesis: the canonic variational principle of
		Hellinger and Prange
892	12.4.2.1	Prange's habilitation thesis
895	12.4.2.2	In the Hades of amnesia
896	12.4.2.3	First steps in recollection
896	12.4.2.4	Eric Reissner's contribution
898	12.4.3	The second stage of the synthesis: the variational principle of
		Fraeijs de Veubeke, Hu and Washizu
901	12.4.4	The variational formulation of FEM
904	12.4.5	A break with symmetry with serious consequences
905	12.5	Back to the roots
907	12.5.1	Priority for mathematical reasoning
908	12.5.2	Influence functions
909	12.5.3	Influence functions and FEM – an example
910	12.5.4	Practical benefits of influence functions
910	12.5.5	The fundamentals of theory of structures
911	12.6	Computational mechanics
916	13	Thirteen scientific controversies in mechanics and theory of structures
917	13.1	The scientific controversy
917	13.2	Thirteen disputes
917	13.2.1	Galileo's Dialogo
918	13.2.2	Galileo's Discorsi

919	13.2.3	The philosophical dispute about the true measure of force
920	13.2.4	The dispute about the principle of least action
921	13.2.5	The dome of St. Peter's in the dispute between theorists and practitioners
923	13.2.6	Discontinuum or continuum?
924	13.2.7	Graphical statics vs. graphical analysis, or the defence of pure theory
925	13.2.8	Animosity creates two schools: Mohr vs. Müller-Breslau
926	13.2.9	The war of positions
927	13.2.10	Until death do us part: Fillunger vs. Terzaghi
929	13.2.11	"In principle, yes": the dispute about principles
931	13.2.12	Elastic or plastic? That is the question.
932	13.2.13	The importance of the classical earth pressure theory
933	13.3	Résumé
934	14	Devenantives for a historical theory of structures
934	14.1	Perspectives for a historical theory of structures Theory of structures and aesthetics
936	14.1.1	The schism of architecture
937	14.1.1	
941	14.1.2	Beauty and utility in architecture – a utopia?
	14.1.3	Alfred Gotthold Meyer's Eisenbauten. Ihre Geschichte und Ästhetik The contholics in the dialectic between building and calculation
945		The aesthetics in the dialectic between building and calculation
948 950	14.2 14.2.1	Historical engineering science – historical theory of structures
952		Saint-Venant's historical elastic theory
	14.2.2	Historical masonry arch theory
952	14.2.3	Historico-genetic teaching of theory of structures
954		The historico-logical longitudinal analysis
954		The historico-logical cross-sectional analysis
955		The historico-logical comparison
955	14.2.3.4	Content, aims, means and characteristics of the historico-genetic
958	14.2.4	teaching of theory of structures Computer-assisted graphical analysis
		5 8 8
962	15	Brief biographies of 260 protagonists of theory of structures
1090		Bibliography
1184		Name index
1196		Subject index