Contents

Preface	xiii	
A Person	al Foreword	xi

Part I Introduction 1

1	Polypharmacology in Drug Discovery 3
	Oscar Méndez-Lucio, J. Jesús Naveja, Hugo Vite-Caritino,
	Fernando D. Prieto-Martínez, and José L. Medina-Franco
1.1	Polypharmacology 3
1.2	Multitarget versus Target-Specific Drugs 5
1.2.1	"Master Key Compounds" 5
1.2.2	Safety Panels 8
1.3	Polypharmacology and Related Concepts in Drug Discovery 11
1.3.1	Drug Repurposing 11
1.3.2	Combination of Drugs 12
1.3.3	In Vivo Testing 12
1.4	Polypharmacology (and Polypharmacy): Case Studies 13
1.4.1	Polypharmacology in Epigenetics 13
1.4.2	Charting the Epigenetic Relevant Chemical Space 14
1.4.3	Polypharmacy for the Treatment of HIV Infections 15
1.5	Computational Strategies to Explore Polypharmacology 15
1.5.1	Chemogenomics: Intersection of Chemical and Biological Spaces 16
1.5.2	Structure–Multiple Activity Relationships 17
1.5.3	Proteochemometric Modeling 19
1.5.4	Target Fishing 19
1.5.5	Data Mining of Side Effects and Interactions for Drug
	Repurposing 20
1.5.6	Systems Pharmacology 21
1.5.7	Polypharmacology Fingerprints 21
1.6	Summary Conclusions 21
	Acknowledgments 22
	References 22

Part II Selectivity of Marketed Drugs 31

2	Kinase Inhibitors 33
	Peng Wu, Michael Givskov, and Thomas E. Nielsen
2.1	Overview 33
2.2	Kinase Profiling 38
2.3	Definition and Quantification of Selectivity Levels 40
2.4	Selectivity of Approved Kinase Inhibitors 43
2.4.1	Non-covalent Type I and Type II SMKIs 45
2.4.2	Allosteric SMKIs 47
2.4.3	Lipid Kinase Inhibitor 48
2.4.4	Covalent Inhibitors 48
2.5	Conclusion and Perspective 48
	Acknowledgment 49
	References 49
3	Repositioning of Drug – New Indications for Marketed
	Drugs 55
	Ren Kong and Stephen T. Wong
3.1	Introduction 55
3.2	New Uses from Adverse Effects 57
3.2.1	Dapoxetine for Premature Ejaculation 57
3.2.2	Sildenafil for Erectile Dysfunction 58
3.3	New Uses Based on Known Mechanism of Action 58
3.3.1	Duloxetine for Stress Urinary Incontinence (SUI) 58
3.3.2	Thalidomide for Erythema Nodosum Leprosum (ENL) and Multiple
	Myeloma 59
3.4	New Uses from Genome, Network, and Signal Pathway Analysis 59
3.4.1	Identification of Sunitinib and Dasatinib for Breast Cancer Brain
	Metastasis 59
3.5	New Uses Based on New Target Identification (Off-Target Effects) 62
3.5.1	Antidepressant Drug, Amoxapine, for Alleviating Cancer Drug
	Toxicity of Irinotecan 62
3.6	Computational and Systematic Drug Repositioning 64
3.6.1	Methods Based on Knowledge of Side Effects 64
3.6.2	Methods Based on Transcriptomics Data (Transcriptional Profile) 65
3.6.3	Methods Based on Genome-Wide Association Study (GWAS) 66
3.6.4	Methods Based on Network and Pathways Analysis 66
3.6.5	Methods Based on Off-Target Effects 67
3.7	Perspective 68
	Acknowledgment 73
	References 73
4	Discovery Technologies for Drug Repurposing 79
	Naiem T. Issa, Stephen W. Byers, and Sivanesan Dakshanamurthy
4.1	Introduction 79
4.2	Biological Drug Screening Methods 79

4.2.1	Phenotypic Screening 79
4.2.1.1	Animal-Based Screening 80
4.2.1.2	Cell-Based Screening 80
4.2.2	Target-Based Screening 81
4.3	In silico Tools for Drug Repurposing 82
4.3.1	Docking 82
	Chemoinformatics 83
4.3.2	
4.3.3	Protein Binding Site 84 Combining Days Contribution Contribution Approaches 86
4.3.4	Combining Drug-Centric with Protein-Centric Approaches 86
4.3.5	Network Pharmacology 86
4.3.6	Mining of Big Data 88
4.4	Conclusion 89
	References 90
	Part III Unselective Drugs in Drug Discovery 101
5	Personalized Medicine 103
•	Christian Noe and Volker Baumann
5.1	Roots of Personalized Medicine 103
5.2	The Return of the Active Pharmaceutical Ingredients (APIs) 104
5.3	Systems Pharmacology 105
5.4	The Patient in the Focus of Research 107
5.5	Personalized Therapy 107
5.6	• •
	Gene Therapy 108
5.7	Regenerative Medicine 110
5.8	Individualized Medicines 110
5.9	Stratified Medicines 112
5.10	Drug Selectivity 113
5.11	Smart Innovation 114
5.12	Electronic Health 115
5.13	Doctor and Patient 115
5.14	The Competent Patient 116
5.15	Conclusion 117
	References 117
6	Drug Discovery Strategies for the Generation of Multitarget
	Ligands against Neglected Tropical Diseases 135
	Annachiara Gandini, Federica Prati, Elisa Uliassi, and Maria L. Bolognesi
6.1	Introduction 135
6.2	Drug Discovery for NTDs: The Past, the Present, and the
	Future 136
6.3	Search for New Anti-Trypanosomatid MTDL Hits: A Phenotypic
	Approach 138
6.4	Search for New Anti-Trypanosomatid MTDL Hits: A Target-Based
	Approach 141
6.5	Search for New Anti-Trypanosomatid MTDL Hits: A Drug Targeting
	Approach 146

6.6	Search for New Anti-Trypanosomatid MTDL Hits: A Combined
	Target/Targeting Approach 149
6.7	Conclusions 151
	References 152
7	Designing Approaches to Multitarget Drugs 161
	Luca Costantino and Daniela Barlocco
7.1	Introduction 161
7.2	Target-Based Approaches for Multitarget Drug Design 163
7.2.1	Designing Approaches for Structurally Related Targets 163
7.2.1.1	Fragment-Based Approach 163
7.2.2	Designing Approaches for Structurally Unrelated Targets 166
7.2.2.1	Crystallography/SAR 166
7.2.2.2	Molecular Docking/Pharmacophore Matching 167
7.3	Ligand-Based Approaches for Multitarget Drug Design 170
7.3.1	Designing Approaches for Structurally Related Targets 170
7.3.1.1	Fragment-Based Approach 170
7.3.1.2	Machine Learning 171
7.3.1.3	SAR around a Lead 173
7.3.1.4	Pharmacophore-Based Approach 176
7.3.2	Designing-In Approaches for Structurally Unrelated Targets 180
7.3.2.1	Fragment-Based Approach 180
7.3.2.2	Pharmacophore-Based Approach 180
7.3.2.3	SAR around a Lead 181
7.3.2.4	Mining Literature Data 183
7.4	Designing Approaches Based on Phenotypic Assays 186
7.5	Conclusions 189
	References 191
8	The Linker Approach: Drug Conjugates 207
0	Daniel Merk and Manfred Schubert-Zsilavecz
8.1	Introduction 207
8.1.1	Targeted Delivery 209
8.2	Drug Conjugates 209
8.2.1	Small Molecule Drug Conjugates 209
8.2.1.1	Chances and Challenges 209
8.2.1.2	Examples 210
8.2.2	Antibody–Drug Conjugates/Protein–Drug Conjugates 217
8.2.2.1	Chances and Challenges 218
8.2.2.2	Examples 219
8.2.3	Polymer–Drug Conjugates 223
8.2.3.1	Chances and Challenges 223
8.2.3.2	Examples 226
8.3	Linker Chemistry 229
8.3.1	Demands on a Linker or How to Link Drugs 229
8.3.2	Linker Types 231
8.4	Conclusion and Future Perspective 233
	References 236

9	Merged Multiple Ligands 247
	Hongming Chen, Udo Bauer, and Ola Engkvist
9.1	Introduction 247
9.2	Computational Methods Utilized in Designing MMLs 248
9.2.1	Bioactivity Data Sources 248
9.2.2	Utilizing Known Polypharmacology to Identify MMLs 248
9.2.3	Applying QSAR Models to Identifying and Optimizing MMLs 249
9.2.4	MMLs Developed Based on Fragments 250
9.2.5	Utilizing Protein Crystal Structures in Identifying MMLs 250
9.3	Examples of Medicinal Chemistry Efforts of Designing MMLs in Drug
	Discovery Projects 251
9.3.1	MMLs in Oncology 251
9.3.2	MML Targeting for Neurodegenerative Disease 255
9.3.2.1	MMLs for the Treatment of Alzheimer's Disease 256
9.3.2.2	MML for the Treatment of Parkinson's Disease 257
9.3.3	MML for the Treatment of Depression 261
9.3.4	MMLs for the Treatment of Cardiovascular Diseases 262
9.3.5	MML for the Treatment of Diabetes and Related Metabolic
	Diseases 264
9.3.6	MML for the Treatment of Inflammation and Pain 267
9.4	Conclusions and Future Outlook 269
	References 269
10	Pharmacophore Generation for Multiple Ligands 275
	Norbert Handler
10.1	Introduction 275
10.2	Ligand-Based Pharmacophore Modeling 276
10.3	Structure-Based Pharmacophore Modeling 278
10.4	Pharmacophore-Based Virtual Screening 279
10.5	Pharmacophore-Based <i>De Novo</i> Design 280
10.6	Limitations for Pharmacophore Modeling 282
10.7	Practical Strategy for Pharmacophore-Based Discovery of Multiple
	Ligands 283
10.8	Linked Fluoroquinolone–Flavonoid Hybrids as Potent Antibiotics
	against Drug-Resistant Microorganisms 285
10.9	<i>N</i> -Phenylquinazolin-4-Amine Hybrids as Dual Inhibitors of VEGFR-2
	and HDAC 286
10.10	Dual Inhibitors of Phospholipase A2 and Human Leukotriene A4
	Hydrolase as Anti-Inflammatory Drugs 287
10.11	Dual Antagonists of the Bradykinin B ₁ and B ₂ Receptors Based on a
	Postulated Common Pharmacophore from Existing Non-Peptide
	Antagonists 290
10.12	Dual-Acting Peptidomimetics with Opioid Agonist–Neurokinin-1
	Antagonist Effect 292
10.13	Novel Dual-Acting Compounds Targeting the Adenosine A _{2A} Receptor
	and Adenosine Transporter for Neuroprotection 292
10.14	Aminobenzimidazoles as Dual-Acting Butyrylcholinesterase Inhibitors
	and hCB_2R Ligands to Combat Neurodegenerative Disorders 295

10.15	Dual Acetylcholinesterase Inhibitors—Histamine H3 Receptor Antagonists for Treating Alzheimer's Disease 297
10.16	Identification of Potential Dual Agonists of FXR and TGR5 Using E-Pharmacophore-Based Virtual Screening 299
10.17	Arylboronic Acids as Dual-Acting FAAH and TRPV1 Ligands 301
10.18	Dual Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase 2 (MAP4K2) 304
10.19	Conclusion and Outlook 307 References 307
11	Cellular Assays 313 Ye Fang
11.1	Introduction 313
11.2	Cell-Based Molecular Assays 314
11.2.1	Ligand Binding Assays 314
11.2.2	Chemoproteomic-Based Assays 315
11.2.3	Signaling Assays 317
11.2.4	Automated Patch Clamping 318
11.2.5	Protein–Protein Interaction Assays 319
11.2.6	Protein Trafficking Assays 319
11.2.7	Chemogenomic-Based Assays 320
11.3	Cell Phenotypic Assays 321
11.3.1	Reporter Gene Assays 322
11.3.2	High Content Imaging Assays 323
11.3.3	Label-Free Cell Phenotypic Assays 324
11.4	Summary 326
11.5	Current and Future Perspectives 326 References 327
	Part IV Therapeutic Areas for Designed Multiple Ligands 335
12	Developing Serotonergic Antidepressants Acting on More
	Than the Serotonin Transporter 337
	Gerard J. Marek
12.1	5-HT Transporter-Based Multiple Ligands for Depression 337
12.2	Beyond SSRIs: Strategies to Improve upon SSRI Antidepressant Activity 338
12.3	Roster of Serotonergic Targets for Drug Developed Outside of the Serotonin Transporter (SERT) 339
12.4	Previously Approved Antidepressants with Multiple Serotonergic Molecular Targets 340
12.5	Tested and Failed/Technically Difficult Dual-Acting Serotonergic

Technical Challenges to Developing New Chemical Entities with

Compounds 347

Multiple Mechanisms of Action 348

12.6

12.7	Clinical Experiments with SSRIs and 5-HT $_{1A}$ Agonists/Antagonists 350
12.8	Clinical Experiments with SSRIs and Drugs Possessing 5-HT _{2A} Receptor Blockade 353
12.9	Non-SERT Serotonergic Targets Mired in Phase 2/3 355
12.10	Conclusions and Outlook 356
	List of Abbreviations 357
	References 357
13	Multiple Ligands Targeting the Angiotensin System for
	Hypertension 369
	Agustin Casimiro-Garcia
13.1	Recent Advances in the Structural Basis for AT_1 Receptor Ligand Binding 370
13.2	Design of Dual AT ₁ and Endothelin A Receptor Antagonists 372
13.3	Design of Dual AT ₁ Receptor Antagonist/PPARy Partial Agonists 377
13.4	Design of Dual AT ₁ Receptor Blocker/NO-Releasing Agents 382
13.5	Design of Dual AT ₁ Receptor Blocker/Antioxidant Activity Agents 384
13.6	Design of AT ₁ Receptor Antagonists with Additional Activity in Other Pathways 387
13.7	Summary 388
	References 389
14	Multiple Peroxisome Proliferator-Activated Receptor-Based
	Ligands 397
	Dmytro Kukhtar, Miquel Mulero, Raul Beltrán-Debón, Cristina Valls,
	Gerard Pujadas, and Santiago Garcia-Vallve
14.1	Introduction 397
14.2	Dual and Pan PPAR Agonists 404
14.3	Other Multiple Ligands that Act through PPARs 415
14.3.1	Angiotensin II Receptor Blockers/PPARγ Agonists 415
14.3.2	COX Inhibitors/PPARγ Agonists 421
14.3.3	Protein Tyrosine Phosphatase 1B Inhibitors/PPAR Agonists 423
14.3.4	11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors/PPAR
	Agonists 423
14.4	Conclusions 424
	Acknowledgments 424
	List of Abbreviations 424
	References 424
15	Antibiotics 433
	Jean-Philippe Surivet and Philippe Panchaud
15.1	Design of Single-Pharmacophore Molecules Acting on Multiple Targets 434
15.1.1	Dual Inhibitors of Bacterial DNA Gyrase and Topoisomerase IV 434

15.1.1.1	Dual Inhibitors Targeting the Binding Site of Fluoroquinolones 435
15.1.1.2	(Non-fluoroquinolone) Dual Inhibitors of DNA Topoisomerases 439
15.1.1.3	Designed Multitarget-Directed Ligands Addressing the ATP-Binding
	Pocket 445
15.1.2	Multitarget Inhibitors of Peptidoglycan Biosynthesis 451
15.1.3	Multitarget Inhibitors of Type II Fatty Acid Synthases 454
15.2	Design of Hybrid Molecules: Dual Pharmacophores Acting on
	Multiple Targets 456
15.2.1	Cephalosporin-Based Hybrid Molecules 457
15.2.2	Fluoroquinolone–Oxazolidinone Hybrid Drugs 459
15.2.3	Fluoroquinolone–Aminouracil Hybrid Drugs 461
15.2.4	Fluoroquinolizine–Rifamycin Hybrid Drugs 462
15.2.5	Hybrid Molecules: Limitations and Perspectives 463
15.3	Emerging Antibacterial Drugs Allowing Multitarget-Directed Ligand
	Design 464
15.4	Conclusion 465
	References 466
16	Multiple Ligands in Neurodegenerative Diseases 477
	Julien Lalut, Christophe Rochais, and Patrick Dallemagne
16.1	Introduction 477
16.2	Molecular Bases of Alzheimer's Disease 478
16.2.1	Amyloid Plaques 478
	The Origin of A β Peptide Formation 478
	Amyloid Plaque Aggregation 480
16.2.2	The Amyloid Cascade Hypothesis 480
16.2.3	Neurofibrillary Tangles 481
16.2.4	Oxidative Stress, Neuroinflammation, and Metal Toxicity 481
16.3	MTDLs Developed for the Treatment of Alzheimer's Disease 483
16.3.1	MTDLs Based on Acetylcholinesterase Inhibition 483
	Multi-site AChE Inhibitors and Antioxidants 485
	Multi-site AChE Inhibitors and Metal Chelators 485
	Multi-site AChE and MAO Inhibitors 486
16.3.2	Multi-site AChE Inhibitors and Serotonin 5-HT ₄ Receptor
	Agonist 486
	Multi-site AChE and M2 Muscarinic Receptor Inhibitors 491
	AChE Inhibitors with a Complex Pharmacological Profile 492
16.3.3	MTDLs Targeting Other Activities Relevant for the Treatment of
	AD 496
16.3.3.1	MTDLs Modulating γ-Secretase and PPARγ 496
	MTDL BACE1 Inhibitors/Metal Chelators 497
16.3.3.3	MTDLs Inhibiting Muscarinic and σ1 Receptors 498
16.4	Parkinson's Disease 501
16.5	Conclusion 502
	References 503