Contents

Preface VII

1.1

Introduction 1

1.2	A Basic Example: Symmetries of a Square 6
	Part One Basics of Group Theory 9
2	Symmetry Operations and Transformations of Fields 11
2.1	Rotations and Translations 11
2.1.1	Rotation Matrices 13
2.1.2	Euler Angles 16
2.1.3	EULER-RODRIGUES Parameters and Quaternions 18
2.1.4	Translations and General Transformations 23
2.2	Transformation of Fields 25
2.2.1	Transformation of Scalar Fields and Angular Momentum 26
2.2.2	Transformation of Vector Fields and Total Angular Momentum 27
2.2.3	Spinors 28
3	Basics Abstract Group Theory 33
3.1	Basic Definitions 33
3.1.1	Isomorphism and Homomorphism 38
3.2	Structure of Groups 39
3.2.1	Classes 40
3.2.2	Cosets and Normal Divisors 42
3.3	Quotient Groups 46
3.4	Product Groups 48

Symmetries in Solid-State Physics and Photonics 4

۷۱	Contents		
	4	Discrete Symmetry Groups in Solid-State Physics and Photonics 5	1
	4.1	Point Groups 52	
	4.1.1	Notation of Symmetry Elements 52	
	4.1.2	Classification of Point Groups 56	
	4.2	Space Groups 59	
	4.2.1	Lattices, Translation Group 59	
	4.2.2	Symmorphic and Nonsymmorphic Space Groups 62	
	4.2.3	Site Symmetry, WYCKOFF Positions, and WIGNER-SEITZ Cell 65	5
	4.3	Color Groups and Magnetic Groups 69	
	4.3.1	Magnetic Point Groups 69	
	4.3.2	Magnetic Lattices 72	
	4.3.3	Magnetic Space Groups 73	
	4.4	Noncrystallographic Groups, Buckyballs, and Nanotubes 75	
	4.4.1	Structure and Group Theory of Nanotubes 75	
	4.4.2	Buckminsterfullerene C ₆₀ 79	
	5	Representation Theory 83	
	5.1	Definition of Matrix Representations 84	
	5.2	Reducible and Irreducible Representations 88	
	5.2.1	The Orthogonality Theorem for Irreducible Representations 90	
	5.3	Characters and Character Tables 94	
	5.3.1	The Orthogonality Theorem for Characters 96	
	5.3.2	Character Tables 98	

Notations of Irreducible Representations 98

Direct Product Representations 112

WIGNER-ECKART Theorem 120

Induced Representations 123

and the Bloch Wave 133

The Reciprocal Lattice 136

Decomposition of Reducible Representations 102

Symmetry and Representation Theory in k-Space 133

The Cyclic Born-von Kármán Boundary Condition

The Brillouin Zone and the Group of the Wave Vector **k** Irreducible Representations of Symmorphic Space Groups

Irreducible Representations of Nonsymmorphic Space Groups 143

Projection Operators and Basis Functions of Representations 105

5.3.3

5.3.4

5.4

5.5

5.6 5.7

6

6.1

6.2

6.3

6.4

6.5

Part Two Applications in Electronic Structure Theory 149

7	Solution of the SCHRÖDINGER Equation 151
7.1	The Schrödinger Equation 151
7.2	The Group of the Schrödinger Equation 153
7.3	Degeneracy of Energy States 154
7.4	Time-Independent Perturbation Theory 157
7.4.1	General Formalism 159
7.4.2	Crystal Field Expansion 160
7.4.3	Crystal Field Operators 164
7.5	Transition Probabilities and Selection Rules 169
8	Generalization to Include the Spin 177
8.1	The Pauli Equation 177
8.2	Homomorphism between $SU(2)$ and $SO(3)$ 178
8.3	Transformation of the Spin-Orbit Coupling Operator 180
8.4	The Group of the Pauli Equation and Double Groups 183
8.5	Irreducible Representations of Double Groups 186
8.6	Splitting of Degeneracies by Spin–Orbit Coupling 189
8.7	Time-Reversal Symmetry 193
8.7.1	The Reality of Representations 193
8.7.2	Spin-Independent Theory 194
8.7.3	Spin-Dependent Theory 196
9	Electronic Structure Calculations 197
9.1	Solution of the Schrödinger Equation for a Crystal 197
9.2	Symmetry Properties of Energy Bands 198
9.2.1	Degeneracy and Symmetry of Energy Bands 200
9.2.2	Compatibility Relations and Crossing of Bands 201
9.3	Symmetry-Adapted Functions 203
9.3.1	Symmetry-Adapted Plane Waves 203
9.3.2	Localized Orbitals 205
9.4	Construction of Tight-Binding Hamiltonians 210
9.4.1	Hamiltonians in Two-Center Form 212
9.4.2	Hamiltonians in Three-Center Form 216
9.4.3	Inclusion of Spin–Orbit Interaction 224
9.4.4	Tight-Binding Hamiltonians from <i>ab initio</i> Calculations 225
9.5	Hamiltonians Based on Plane Waves 227
9.6	Electronic Energy Bands and Irreducible Representations 230
9.7	Examples and Applications 236
9.7.1	Calculation of Fermi Surfaces 236
9.7.2	Electronic Structure of Carbon Nanotubes 238
9.7.3	Tight-binding Real-Space Calculations 240
9.7.4	Spin–Orbit Coupling in Semiconductors 245
9.7.5	Tight-Binding Models for Oxides 247

14.3.2

	Part Three Applications in Photonics 251
10	Solution of MAXWELL's Equations 253
10.1	Maxwell's Equations and the Master Equation for Photonic
	Crystals 254
10.1.1	The Master Equation 254
10.1.2	One- and Two-Dimensional Problems 256
10.2	Group of the Master Equation 257
10.3	Master Equation as an Eigenvalue Problem 259
10.4	Models of the Permittivity 260
10.4.1	Reduced Structure Factors 264
10.4.2	Convergence of the Plane Wave Expansion 266
11	Two-Dimensional Photonic Crystals 269
11.1	Photonic Band Structure and Symmetrized Plane Waves 270
11.1.1	Empty Lattice Band Structure and Symmetrized Plane Waves 270
11.1.2	Photonic Band Structures: A First Example 273
11.2	Group Theoretical Classification of Photonic Band Structures 276
11.3	Supercells and Symmetry of Defect Modes 279
11.4	Uncoupled Bands 283
12	Three-Dimensional Photonic Crystals 287
12.1	Empty Lattice Bands and Compatibility Relations 287
12.2	An example: Dielectric Spheres in Air 291
12.3	Symmetry-Adapted Vector Spherical Waves 293
	Part Four Other Applications 299
13	Group Theory of Vibrational Problems 301
13.1	Vibrations of Molecules 301
13.1.1	Permutation, Displacement, and Vector Representation 302
13.1.2	Vibrational Modes of Molecules 305
13.1.3	Infrared and Raman Activity 307
13.2	Lattice Vibrations 310
13.2.1	Direct Calculation of the Dynamical Matrix 312
13.2.2	Dynamical Matrix from Tight-Binding Models 314
13.2.3	Analysis of Zone Center Modes 315
14	Landau Theory of Phase Transitions of the Second Kind 319
14.1	Introduction to Landau's Theory of Phase Transitions 320
14.2	Basics of the Group Theoretical Formulation 324
14.3	Examples with GTPack Commands 326
14.3.1	Invariant Polynomials 326

Landau and Lifshitz Criterion 327

	Appendix A Spherical Harmonics 331
A.1	Complex Spherical Harmonics 332
A.1.1	Definition of Complex Spherical Harmonics 332
A.1.2	Cartesian Spherical Harmonics 332
A.1.3	Transformation Behavior of Complex Spherical Harmonics 333
A.2	Tesseral Harmonics 334
A.2.1	Definition of Tesseral Harmonics 334
A.2.2	Cartesian Tesseral Harmonics 335
A.2.3	Transformation Behavior of Tesseral Harmonics 336
	Appendix B Remarks on Databases 337
B.1	Electronic Structure Databases 337
B.1.1	Tight-Binding Calculations 337
B.1.2	Pseudopotential Calculations 338
B.1.3	Radial Integrals for Crystal Field Parameters 339
B.2	Molecular Databases 339
B.3	Database of Structures 339
	Appendix C Use of MPB together with GTPack 341
C.1	Calculation of Band Structure and Density of States 341
C.2	Calculation of Eigenmodes 342
C.3	Comparison of Calculations with MPB and <i>Mathematica</i> 343
	Appendix D Technical Remarks on GTPack 345
D.1	Structure of GTPack 345
D.2	Installation of GTPack 346
	References 349

Index 359