Contents

Preface xi

1	Introduction for Biomimetic Superhydrophobic Materials 1
1.1	Water Harvesting 2
1.2	Self-Cleaning 6
1.3	Corrosion Resistance 9
1.4	Photochromism 13
1.5	Robust and Durable Superhydrophobic Materials 15
1.6	Transparent and Conductive Superhydrophobic Film 16
1.7	Anti-fingerprint Superhydrophobic Film 18
1.8	Anti-icing Ability 18
1.9	Summary 20
	References 22
2	Superhydrophobic Surfaces from Nature and Beyond Nature 25
2.1	Superhydrophobic Plant Surfaces in Nature 26
2.1.1	Lotus Leaf 26
2.1.2	Salvinia 27
2.1.3	Petal 29
2.2	Superhydrophobic Surfaces of Animals in Nature 31
2.2.1	Springtail 31
2.2.2	Fish Scale 31
2.2.3	Shark Skin 33
2.2.4	Snail Shell 33
2.2.5	Mosquito Eyes 33
2.2.6	Clam's Shell 33
2.3	Chemical Composition of Plant and Animal Surfaces 34
2.4	Inspired and Beyond Superhydrophobicity: from Natural
	to Biomimetic Structures 38
2.4.1	Inspired by Natural Superhydrophobic Surfaces 38
2.4.2	Biomimetic Superhydrophobic Materials 40
2.4.2.1	Lotus-Leaf-Like Surface with Superhydrophobicity
	and Self-Cleaning 40
2.4.2.2	Salvinia-Like Surface with Superhydrophobicity and Air Retention 42
2.4.2.3	Petal-Like Surface with Superhydrophobicity and Special Adhesion 43

/i	Contents	
•	2.5	Summary 46
		References 47
	3	Advances in the Theory of Superhydrophobic Surfaces
		and Interfaces 59
	3.1	Basic Theories: Contact Angle and Young's Equation 60
	3.2	Wenzel Model: Adaptability and Limitations 62
	3.3	Cassie–Baxter Model: Adaptability and Limitations 64
	3.4	Improved Models 66
	3.4.1	Hierarchical Structure 66
	3.4.2	Fractal Structure 68
	3.4.3	Contact Angle Hysteresis 69
	3.4.4	Generalized Models of Wenzel and Cassie–Baxter 72
	3.5	Cassie-Wenzel and Wenzel-Cassie Transitions on Superhydrophobic
		Surfaces 74
	3.5.1	The Influencing Factors of the Transitions 75
	3.5.2	Cassie–Wenzel Transition 75
	3.5.3	Wenzel–Cassie Transition 76
	3.5.4	Analyzing Transitions from Thermodynamic and Kinetic Points
		of View 76
	3.6	Summary 77
		References 77
	4	Fabrications of Noncoated Superhydrophobic Surfaces
		and Interfaces 85
	4.1	Etching Method 87
	4.2	Lithography 89
	4.3	Anodization 92
	4.4	Laser Processing 93
	4.5	Sol-Gel Process 95
	4.6	Electrodeposition 97
	4.7	Hydrothermal Method 101
	4.8	Direct Reproduction 103
	4.9	Other Fabrication Methods 104
	4.10	Summary 105
		References 106
	5	Biomimetic Superhydrophobic Nanocoatings: From Materials
		to Fabrications and to Applications 117

Materials for Nanocoatings 118

Chemical Vapor Deposition 124

Inorganic-Organic Hybrid Materials 123

Fabrications of Superhydrophobic Nanocoatings 123

Inorganic Materials 118

Organic Materials 122

Sol-Gel Processes 123

Spray Process 125

5.1

5.1.1

5.1.2

5.1.3

5.2.2

5.2.3

5.2 5.2.1

5.2.4	Electrospinning Process 126
5.2.5	Electrodeposition 126
5.2.6	Solution Immersion Process 127
5.2.7	Others Techniques 128
5.3	Biomimetic Transparent and Superhydrophobic Coating 128
5.3.1	The Two Competitive Characters: Transparency
	and Superhydrophobicity 129
5.3.2	Various Materials for Transparent and Superhydrophobic
	Surfaces 130
5.3.2.1	Inorganic Materials 130
5.3.2.2	Organic Material Polymers 138
5.3.2.3	Hybrid Materials 143
5.3.3	Potential Applications 144
5.4	Summary 146
J. 1	References 148
	References 110
6	Adhesion Behaviors on Superhydrophobic Surfaces and Interfaces 162
6.1	Liquid–Solid Adhesion of Superhydrophobic Surfaces 162
6.1.1	Surfaces with Special Adhesion in Nature 162
6.1.2	Artificial Superhydrophobic Surfaces with Special Adhesion 164
6.1.3	Switchable Liquid–Solid Adhesions on Superhydrophobic
	Surfaces 167
6.1.3.1	By Controlling the Chemical Composition and Rough
0.2.0.2	Structures 167
6.1.3.2	By Controlling the External Stimuli 168
6.2	The Adhesion Conversion from Liquid–Solid to Solid–Solid
0.2	States 173
6.2.1	Mechanism of Ice Crystallization 174
6.2.2	Anti-adhesion Icing Properties of Superhydrophobic Surfaces 176
6.3	Solid–Solid Adhesion of Superhydrophobic Surfaces 179
6.3.1	Protein Adsorption on Superhydrophobic Surfaces 179
6.3.2	Cell Adhesion on Superhydrophobic Surfaces 181
6.3.3	Bacterial Adhesions on Superhydrophobic Surfaces 181
6.4	Summary 183
0.1	References 184
	Actioned 101
7	Smart Biomimetic Superhydrophobic Materials with Switchable
	Wettability 191
7.1	Single-Response Smart Responsive Surfaces 192
7.1.1	pH-Responsive Wettable Materials 192
7.1.2	Photo-Induced Self-Cleaning Properties 194
7.1.3	Temperature-Responsive Wettable Materials 201
7.1.4	Ion-Responsive Wettable Materials 206
7.1.5	Other External Stimuli 207
7.1.5	Dual-Responsive and Multiple-Responsive Surfaces 214
7.3	Summary 217
	References 219

8	Biomimetic Superhydrophobic Materials Applied for Oil/Water Separation (I) 229
8.1	Metallic Mesh-Based Materials 230
8.2	Fabric-Based Materials 234
8.3	Sponge and Foam-Based Materials 236
8.4	Particles and Powdered Materials 240
8.5	Other Bulk Materials 241
8.6	
8.7	Theories Underlying Oil/Water Separation Behavior 242
0.7	Summary 243 References 243
	References 243
9	Biomimetic Superhydrophobic Materials Applied for Oil/Water Separation (II) 249
9.1	The Formation of Oil/Water Emulsions 249
9.2	Modified Ceramic Separation Membranes 251
9.3	Polymer-Based Separation Membranes 253
9.3.1	In Situ Polymerization 253
9.3.2	Mussel-Inspired Deposition 254
9.3.3	Electrospinning Deposition 255
9.3.4	Phase-Inversion Process 255
9.4	Inorganic Carbon-Based Membranes 259
9.4.1	Carbon Nanotube- or Graphene-Based Membranes 259
9.4.2	Cellulose-Based Membranes 259
9.5	Non-Two-Dimensional Separating Methods 266
9.6	Summary 267
2.0	References 268
	References 200
10	Biomimetic Superhydrophobic Materials Applied for Anti-icing/
	Frosting 273
10.1	Introduction of Anti-icing/Frosting 273
10.2	Ice and Frost Formation Mechanism 275
10.2.1	Ice Formation Mechanism 277
10.2.1.2	Modified Ice Nucleation Theories and Surface Conception 280
	Frost Formation Mechanism 282
10.3	Natural Superhydrophobic and Icephobic Examples 284
10.3.1	Natural Superhydrophobic Examples 284
	Mosquito's Eyes 284
	Butterfly's Wings 296
10.3.2	Natural Icephobic Examples 298
	Pitcher Plant 298
	Skunk Cabbage 298
10.4	1
	Anti-icing Performances of SHPSs under Various Situations 299
10.4.1	SHPSs Versus Deposited Water Droplets 299
10.4.1 10.4.1.1	SHPSs Versus Deposited Water Droplets 299 Timely Droplet Rolling 299
10.4.1 10.4.1.1	SHPSs Versus Deposited Water Droplets 299

10.4.2.1	Impact Resistance Improvement 307
10.4.2.2	Anti-icing SHPSs upon Impact Droplets 309
10.4.2.3	Contact Time Minimization 312
10.4.2.4	Oblique Impact Dynamics on Inclined SHPSs 313
10.4.3	SHPSs Versus Condensed Water Droplets 316
10.4.3.1	Wetting Transition of Condensed Microdroplets 316
10.4.3.2	Coalescence-Induced Jumping and Charging 317
10.4.3.3	Inter-droplet Ice Bridging and Edge-Initiation Effect 321
10.5	Design and Icing-Delay Performances of SLIPSs 324
10.5.1	SLIPSs Design 324
10.5.2	Droplet Impact and Condensation on SLIPSs 326
10.5.3	Anti-frosting Performance of SLIPSs 329
10.6	Icephobic Performances of SHPSs 331
10.7	Icephobic Performances of Advanced Surfaces and Techniques 336
10.7.1	Slippery Lubricant-Infused Porous Surfaces 336
10.7.2	Self-Lubricating Liquid Water Layers 337
10.7.3	Other Icephobic Strategies 340
10.8	Theories behind Anti-icing Research 343
10.8.1	Surface Wettability Theories and Models 343
10.8.2	Water and Ice Adhesion to Solid Surface 345
10.8.3	Droplet Impacting and Bouncing 346
10.8.4	Spontaneous Jumping Departure of Condensed Droplets 348
10.9	Summary 350
	References 352

Conclusions and Outlook 373 11

Index *377*