

Contents

Preface	<i>ix</i>	
Abbreviation	<i>xi</i>	
1	Hydrogen Bonding in Polymeric Materials	1
1.1	Introduction	1
1.1.1	Hydrogen Bonds	2
1.1.2	Characterization of Hydrogen Bonding	3
	References	6
2	Hydrogen Bonding in Polymer Blends	9
2.1	Thermodynamic Properties of Polymer Blends	10
2.2	Association Model Approach	12
2.3	Measurement of Hydrogen Bonding Using Infrared Spectroscopy	14
2.3.1	Self-Association Equilibrium Constants	14
2.3.2	Interassociation Equilibrium Constants	17
2.4	Factors Influencing Hydrogen Bonds	20
2.4.1	Intramolecular Screening Effect	21
2.4.2	Functional Group Accessibility	21
2.4.3	Acidity of H-Bond Donor Groups	23
2.4.4	Basicity of H-Bond Acceptor Groups	24
2.4.5	Steric Hindrance	25
2.4.6	Bulky Group Effect	25
2.4.7	Temperature Effect	26
2.4.8	Solvent Effect	28
2.5	Miscibility Enhancement Through Hydrogen Bonding	28
2.5.1	Miscibility Characterization	28
2.5.2	Incorporation of H-Bonding Functional Groups in Polymer Chains	30
2.5.3	Effect of Inert Diluent Segment	32
2.5.4	Ternary Polymer Blends	33
	References	36

3	Physical Properties of Hydrogen-Bonded Polymers	41
3.1	Glass Transition Temperatures	41
3.1.1	Positive Deviation of Glass Transition Temperature	41
3.1.2	Negative Deviation of Glass Transition Temperature	48
3.2	Melting Temperature (T_m)	50
3.3	Dynamic Behavior	51
3.4	Crystallization Behavior	54
	References	56
4	Surface Properties of Hydrogen-Bonded Polymers	61
4.1	Low Surface Energy Polymers	61
4.1.1	Polybenzoxazines	63
4.1.2	Poly(vinyl phenol)	67
4.1.3	Antisticking Applications of PBZs	72
4.1.4	Tuning the Surface Properties of PBZ Thin Films	73
4.2	Superhydrophobic Surfaces	78
4.2.1	Superhydrophobic Surfaces of PBZ after Plasma Treatment	80
4.2.2	PBZ/SiO ₂ Hybrid Superhydrophobic Surfaces	82
4.2.3	PBZ/CNT Hybrid Superhydrophobic Surfaces	85
	References	88
5	Sequence Distribution Effects in Hydrogen-Bonded Copolymers	93
5.1	Block Copolymers versus Random Copolymers	93
5.2	Block Copolymers versus Polymer Blends	98
5.3	Separated Coils versus Chain Aggregates	102
	References	105
6	Hydrogen Bond-Mediated Self-Assembled Structures of Block Copolymers	107
6.1	Self-Assembled Structures in the Bulk State	107
6.1.1	Mixtures of Diblock Copolymers and Low-Molecular-Weight Compounds	109
6.1.2	Diblock Copolymer/Homopolymer Mixtures	111
6.1.2.1	Immiscible A–B Diblock Segments; C is Miscible With B, but Immiscible With A	111
6.1.2.2	Immiscible A–B Diblock Segments; C is Miscible with Both A and B	119
6.1.2.3	Miscible A and B Diblock Segments; C is Miscible with Both A and B	126
6.1.2.4	Miscible A and B Diblock Segments; C is Miscible with B, but Immiscible with A	130
6.1.3	Diblock Copolymer Mixture	133
6.2	Self-Assembled Structures in Solution	140
6.2.1	Mixtures of Block Copolymers and Low-Molecular-Weight Compounds	141

6.2.2	Block Copolymer/Homopolymer Mixtures	145
6.2.3	Diblock Copolymer Mixtures	147
6.2.4	Noncovalently Bonded Micelles (Block-Free Copolymers)	152
	References	159
7	Mesoporous Materials Prepared Through Hydrogen Bonding	167
7.1	Mesoporous Silica Materials	167
7.1.1	Monomodal Mesoporous Silicas by A–B Block Copolymer	169
7.1.2	Monomodal Mesoporous Silicas Formed Using A–B Block Copolymer/Homopolymer Blends	179
7.1.3	Hierarchical Mesoporous Silica Materials	186
7.2	Mesoporous Phenolic/Carbon Materials	197
7.2.1	Mesoporous Phenolic/Carbon Materials from A–B Block Copolymers	197
7.2.2	Mesoporous Phenolic/Carbon Materials from A–B Block Copolymer/Homopolymer Blends	207
7.2.3	Mesoporous Phenolic/Carbon Materials from A–B–C Triblock Copolymers	213
	References	215
8	Bioinspired Hydrogen Bonding in Biomacromolecules	219
8.1	Polypeptides	219
8.1.1	Secondary Structural Characterization of Polypeptides	221
8.1.2	Secondary and Self-Assembled Structures of Polypeptide-Based Blends	226
8.1.3	Secondary and Self-Assembled Structures through Polypeptide-Based Block Copolymer	244
8.2	DNA-Like Multiple H-Bonding Interactions in Polymers	252
8.2.1	Supramolecular Polymer Blends Featuring Multiple H-Bonding Interactions	252
8.2.2	Thermoplastic Supramolecular Polymeric Elastomers	259
8.2.3	Self-Healing Supramolecular Polymers	262
8.2.4	Optoelectronic Supramolecular Polymers	263
8.2.5	Supramolecular Polymers with Carbon Nanotubes	267
8.2.6	Double-Helical Supramolecular Polymers	275
	References	281
9	Hydrogen Bonding in POSS Nanocomposites	287
9.1	Introduction to POSS Nanocomposites	287
9.2	General Approaches for Synthesizing POSS Compounds	288
9.2.1	Monofunctional POSS Compounds	288
9.2.2	Bifunctional POSS Compounds	289
9.2.3	Multifunctional POSS Compounds	292
9.3	Varying the Miscibility of Polymer/POSS Nanocomposites through H-Bonding	292

9.4	POSS Nanocomposites by H-Bonding Interaction	297
9.4.1	Phenolic Systems	297
9.4.2	PVPh Systems	306
9.4.3	PNIPAm Systems	311
9.4.4	Polypeptide Systems	312
9.4.5	Polybenzoxazine Systems	317
9.4.6	Polyimide Systems	323
9.4.7	Photoresist Systems	335
9.4.8	Nanoparticle Systems	337
9.4.8.1	POSS NPs Presenting Various Functional Groups	337
9.4.8.2	POSS NP-Modified Clay	344
9.4.8.3	POSS-Modified Gold Nanoparticles	345
	References	348