## **Contents**

## Preface — VII

## Symbol index —— XVII

| 1          | What is surface tension? —— 1                                          |
|------------|------------------------------------------------------------------------|
| 1.1        | Surface tension and its definition —— 1                                |
| 1.2        | Physical origin of the surface tension                                 |
|            | of mono-component liquids —— 2                                         |
| 1.3        | Temperature dependence of the surface tension —— 6                     |
| 1.4        | Impact of entropy on the surface tension: the effect                   |
|            | of surface freezing —— 6                                               |
| 1.5        | Surfactants — 7                                                        |
| 1.6        | A bit of exotics: when the surface tension is negative? — 7            |
| 1.7        | Laplace pressure —— 8                                                  |
| 1.8        | Surface tension of solids —— 10                                        |
| 1.9        | Values of surface tensions of solids —— 10                             |
| 1.10       | Surface tension and the equilibrium shape of droplets and crystals     |
|            | (the Wulff construction) —— 11                                         |
| 1.11       | One more minimization problem: soap bubbles and the Plateau            |
|            | problem 12                                                             |
| Append     | lix                                                                    |
| 1A         | The short-range nature of intermolecular forces —— 13                  |
| 1B         | The Laplace pressure from simple reasoning —— 14                       |
| <b>1</b> C | Accurate thermodynamic definition of a surface tension —— 14           |
| Exercis    | es —— 15                                                               |
| Refere     | nces — 18                                                              |
| 2          | Wetting of surfaces: the contact angle —— 20                           |
| 2.1        | What is wetting? The spreading parameter —— 20                         |
| 2.2        | The Young equation —— 21                                               |
| 2.3        | Line tension —— 22                                                     |
| 2.4        | Disjoining pressure —— 23                                              |
| 2.5        | Wetting of an ideal surface: considering the disjoining pressure —— 25 |
| 2.6        | Capillary rise —— 27                                                   |
| 2.7        | Wetting of real surfaces. Contact angle hysteresis — 30                |
| 2.8        | Contact angle hysteresis on smooth homogeneous substrates —— 32        |
| 2.8        | Contact angle hysteresis on real surfaces —— 33                        |
| 2.9        | The dynamic contact angle —— 33                                        |



| Append  | lix                                                                            |
|---------|--------------------------------------------------------------------------------|
| 2A      | Origin of the disjoining pressure from simple qualitative considerations —— 35 |
| Exercis | es — 36                                                                        |
| Referen | ces — 38                                                                       |
| 3       | Surface tension-assisted floating of heavy and light objects and walking       |
|         | of water striders —— 40                                                        |
| 3.1     | Surface tension-assisted floating. The Keller theorem —— 40                    |
| 3.2     | Floating of a heavy sphere —— 42                                               |
| 3.3     | Floating of a heavy cylinder —— 44                                             |
| 3.4     | Surface tension supported floating of heavy objects:                           |
|         | why do elongated bodies float better? —— 44                                    |
| 3.5     | Floating of rectangular plates —— 46                                           |
| 3.6     | Floating of ellipsoidal objects —— 48                                          |
| 3.7     | Walking of water striders —— 49                                                |
| 3.8     | Water striders climbing a water meniscus —— 53                                 |
| 3.9     | Underwater floating of light bodies —— 55                                      |
| Exercis | es —— 58                                                                       |
| Referen | ces — 60                                                                       |
| 4       | Capillary interactions between particles. Particles placed on liquid           |
|         | surfaces. Elasticity of liquid surfaces, covered by colloidal particles —— 62  |
| 4.1     | Capillary interactions between colloidal particles —— 62                       |
| 4.2     | A capillary model of crystals according to Bragg and Nye —— 65                 |
| 4.3     | Electrostatic interactions between floating                                    |
|         | colloidal particles —— 66                                                      |
| 4.4     | A single particle located at the liquid/vapor                                  |
|         | and liquid/liquid interfaces —— 67                                             |
| 4.5     | Elasticity of liquid surfaces, coated with colloidal particles —— 69           |
| Exercis | es — 73                                                                        |
| Referen | rces —— 75                                                                     |
| 5       | Capillary waves —— 77                                                          |
| 5.1     | Gravity, capillary and gravity/capillary waves —— 77                           |
| 5.2     | Gravity waves — 77                                                             |
| 5.3     | Waves on deep and shallow waters —— 80                                         |
| 5.4     | Capillary waves —— 81                                                          |
| 5.5     | Clustering of solid particles in standing surface waves — 84                   |
| Exercis | es — 85                                                                        |
| Referen | nces — 87                                                                      |

| 6                 | Oscillation of droplets —— 88                                         |  |
|-------------------|-----------------------------------------------------------------------|--|
| 6.1               | Oscillating free droplets —— 88                                       |  |
| 6.2               | Oscillating sessile droplets — 89                                     |  |
| 6.3               | Characterization of solid substrates with vibrated droplets —— 91     |  |
| 6.4               | Transport of droplets with vibration —— 93                            |  |
| 6.5               | Oscillation of droplets induced by electric and magnetic fields —— 93 |  |
| Exercise          | es —— 94                                                              |  |
| Referen           | ces —— 95                                                             |  |
| 7                 | Marangoni flow and surface instabilities — 97                         |  |
| 7.1               | Thermo- and soluto-capillary Marangoni flows —— 97                    |  |
| 7.2               | The physics of wine tears —— 97                                       |  |
| 7.3               | The Plateau-Rayleigh instability —— 100                               |  |
| 7.4               | The Rayleigh-Taylor instability —— 101                                |  |
| 7.5               | The Kelvin-Helmholtz instability —— 103                               |  |
| 7.6               | Rayleigh-Bénard instability —— 105                                    |  |
| 7.7               | The Bénard-Marangoni instability —— 107                               |  |
| 7.8               | The topological aspect of the Bénard-Marangoni instability —— 108     |  |
| 7.9               | Surface instabilities on the surfaces of non-Newtonian liquids —— 110 |  |
| <b>Append</b>     | İx                                                                    |  |
| 7A                | The Buckingham theorem —— 112                                         |  |
| Exercise          | es —— 114                                                             |  |
| Referen           | ces —— 117                                                            |  |
| 8                 | Evaporation of droplets. The Kelvin                                   |  |
|                   | and the coffee-stain effects —— 119                                   |  |
| 8.1               | Evaporation of suspended droplets: the Maxwell-Langmuir               |  |
|                   | approximation —— 119                                                  |  |
| 8.2               | Evaporation of suspended droplets: beyond Maxwell-Langmuir            |  |
|                   | approximation, the effect of droplet cooling                          |  |
|                   | by evaporation —— 120                                                 |  |
| 8.3               | Evaporation of small droplets. The Kelvin effect —— 122               |  |
| 8.4               | Evaporation of sessile droplets —— 124                                |  |
| 8.5               | The coffee-stain effect —— 124                                        |  |
| 8.6               | Evaporation of droplets placed on strongly and weakly pinning         |  |
|                   | surfaces: a stick-slip motion of the triple line —— 126               |  |
| 8.7               | Qualitative characterization of the pinning of the triple line —— 130 |  |
| 8.8               | The zero eventual contact angle of evaporated droplets                |  |
|                   | and its explanation —— 132                                            |  |
| Exercises —— 134  |                                                                       |  |
| References —— 136 |                                                                       |  |

| 9       | Condensation, growth and coalescence of droplets and the breath-figure  |
|---------|-------------------------------------------------------------------------|
|         | self-assembly —— 138                                                    |
| 9.1     | Condensation of suspended droplets: the droplet size dependence of      |
|         | surface tension —— 138                                                  |
| 9.2     | Kinetics of homogeneous nucleation —— 140                               |
| 9.3     | Heterogeneous condensation —— 141                                       |
| 9.4     | Coalescence of droplets —— 143                                          |
| 9.5     | Capillary condensation —— 145                                           |
| 9.6     | Breath figures self-assembly —— 146                                     |
| 9.7     | Anti-fogging and anti-icing surfaces —— 149                             |
| 9.8     | Non-coalescence and delayed coalescence of droplets —— 150              |
| Append  | tix                                                                     |
| 9A      | Gibbs dividing surface —— 151                                           |
| 9B      | Voronoi diagram and Voronoi entropy —— 153                              |
| Exercis | es —— 155                                                               |
| Referer | nces —— 157                                                             |
| 10      | Dynamics of wetting: bouncing, spreading and rolling of droplets (water |
|         | hammer effect – water entry and drag-out problems) —— 161               |
| 10.1    | Bouncing of droplets: collision with a solid substrate —— 161           |
| 10.2    | Impact of droplets: collision with wet substrates —— 164                |
| 10.3    | Contact time of a bouncing droplet —— 165                               |
| 10.4    | Pancake bouncing —— 165                                                 |
| 10.5    | Water hammer effect —— 166                                              |
| 10.6    | The water entry problem —— 167                                          |
| 10.7    | Spreading of droplets: Tanner's law —— 167                              |
| 10.8    | Superspreading —— 168                                                   |
| 10.9    | Dynamics of filling of capillary tubes —— 169                           |
| 10.10   | The drag-out problem —— 170                                             |
| 10.11   | Dynamic wetting of heterogeneous surfaces —— 172                        |
| Exercis | es —— 173                                                               |
| Referer | nces —— 175                                                             |
| 11      | Superhydrophobicity and superoleophobicity: the Wenzel and Cassie       |
|         | wetting regimes —— 177                                                  |
| 11.1    | General remarks —— 177                                                  |
| 11.2    | The Wenzel model —— 177                                                 |
| 11.3    | The Cassie-Baxter wetting model —— 178                                  |
| 11.4    | Cassie-Baxter wetting in a situation where a droplet                    |
|         | partially sits on air —— 179                                            |
| 11.5    | Cassie-Baxter impregnating wetting —— 181                               |
|         |                                                                         |

| 11.6        | The importance of the area adjacent to the triple line                              |
|-------------|-------------------------------------------------------------------------------------|
|             | in the wetting of rough and chemically heterogeneous surfaces —— 182                |
| 11.7        | The mixed wetting state —— 183                                                      |
| 11.8        | Superhydrophobicity —— 184                                                          |
| 11.9        | Superhydrophobicity and the Cassie-Baxter wetting regime —— 185                     |
| 11.10       | Wetting of hierarchical reliefs —— 186                                              |
| 11.11       | Wetting transitions on rough surfaces —— 187                                        |
| 11.12       | Irreversibility of wetting transitions —— 189                                       |
| 11.13       | Critical pressure necessary for wetting transitions —— 190                          |
| 11.14       | The Cassie wetting and wetting transitions on inherently hydrophilic surfaces — 190 |
| 11.15       | The dimension of wetting transitions —— 193                                         |
| 11.16       | Superoleophobicity —— 193                                                           |
| 11.17       | The rose petal effect — 194                                                         |
| Exercises — | •                                                                                   |
| References  | —— 197                                                                              |
| 12 The      | Leidenfrost effect. Liquid marbles: self-propulsion —— 201                          |
| 12.1        | General remarks —— 201                                                              |
| 12.2        | Leidenfrost droplets — 201                                                          |
| 12.3        | Liquid marbles —— 204                                                               |
| Exercises — | •                                                                                   |
| References  |                                                                                     |
|             |                                                                                     |
| 13 Phy      | rsics, geometry, life and death of soap films and bubbles —— 218                    |
| 13.1        | History of soap bubbles —— 218                                                      |
| 13.2        | Soap films, soap bubbles and their properties —— 219                                |
| 13.3        | Soap films and bubbles: the role of the surfactant —— 220                           |
| 13.4        | Life and death of soap bubbles —— 222                                               |
| 13.5        | Cavitation —— 224                                                                   |
| Appendix    |                                                                                     |
| 13A         | The Fokker-Planck equation —— 225                                                   |
| Exercises — |                                                                                     |
| References  | <del></del>                                                                         |
|             |                                                                                     |

Index — 230