Essential Methods Contents

Preface XI		
Acknowledge	ments	XIII
Abbreviations	XV	
Frontispiece	XIX	

1	Introduction 1
1.1	The Idea of Control 1
1.2	Importance of Control in Chemical Processing 3
1.3	Organisation of This Book 5
1.4	Semantics 6
	References 7
2	Instrumentation 9
2.1	Piping and Instrumentation Diagram Notation 9
2.2	Plant Signal Ranges and Conversions 11
2.3	A Special Note on Differential Pressure Cells 14
2.4	Measurement Instrumentation 16
2.4.1	Flow Measurement 17
2.4.1.1	Flow Measurement Devices Employing Differential Pressure 17
2.4.1.2	Other Flow Measurement Devices 22
2.4.2	Level Measurement 22
2.4.2.1	Level Measurement by Differential Pressure 22
2.4.2.2	Other Level Measurement Techniques 25
2.4.3	Pressure Measurement 25
2.4.4	Temperature Measurement 26
2.4.4.1	Thermocouple Temperature Measurement 26
2.4.4.2	Metal Resistance Temperature Measurement 28
2.4.4.3	Temperature Measurements Using Other Principles 28
2.4.5	Composition Measurement 29
2.5	Current-to-Pneumatic Transducer 31
2.6	Final Control Elements (Actuators) 31

2.6.1	Valves 32
2.6.1.1	Pneumatically Operated Globe Control Valve 32
2.6.1.2	Valve Characteristics 35
2.6.1.3	Valve $C_{\rm V}$ and $K_{\rm V}$ 36
2.6.1.4	Specification of Valves for Installed Performance 37
2.6.1.5	Control Valve Hysteresis 39
2.6.1.6	Various Flow Control Devices 40
2.6.2	Some Other Types of Control Actuators 42
2.7	Controllers 42
2.8	Relays, Trips and Interlocks 44
2.9	Instrument Reliability 45
	References 51
3	Modelling 53
3.1	General Modelling Strategy 54
3.2	Modelling of Distributed Systems 59
3.3	Modelling Example for a Lumped System: Chlorination Reservoirs 61
3.4	Modelling Example for a Distributed System: Reactor Cooler 63
3.5	Ordinary Differential Equations and System Order 67
3.6	Linearity 69
3.7	Linearisation of the Equations Describing a System 73
3.8	Simple Linearisation 'Δ' Concept 75
3.9	Solutions for a System Response Using Simpler Equations 77
3.9.1	Mathematical Solutions for a System Response in the <i>t</i> -Domain 77
3.9.2	Mathematical Solutions for a System Response in the s-Domain 79
3.9.2.1	Review of Some Laplace Transform Results 79
3.9.2.2	Use of Laplace Transforms to Find the System Response 84
3.9.2.3	Open-Loop Stability in the s-Domain 95
3.9.3	Mathematical Solutions for System Response in the <i>z</i> -Domain 97
3.9.3.1	Review of Some z-Transform Results 98
3.9.3.2	Use of z-Transforms to Find the System Response 104
3.9.3.3	Evaluation of the Matrix Exponential Terms 109
3.9.3.4	Shortcut Methods to Obtain Discrete Difference Equations 110
3.9.3.5	Open-Loop Stability in the z-Domain 111
3.9.4	Numerical Solution for System Response 113
3.9.4.1	Numerical Solution Using Explicit Forms 114
3.9.4.2	Numerical Solution Using Implicit Forms 115
3.9.5	Black Box Modelling 117
3.9.5.1	Step Response Models 117
3.9.5.2	Regressed Dynamic Models 122
3.9.6	Modelling with Automata, Petri Nets and Their Hybrids 126
3.9.7	Models Based on Fuzzy Logic 132
3.10	Use of Random Variables in Modelling 136
3.11	Modelling of Closed Loops 141
	References 142

4	Basic Elements Used in Plant Control Schemes 143
4.1	Signal Filtering/Conditioning 143
4.2	Basic SISO Controllers 147
4.2.1	Block Diagram Representation of Control Loops 147
4.2.2	Proportional Controller 150
4.2.3	Proportional–Integral Controller 151
4.2.4	Proportional–Integral–Derivative Controller 153
4.2.5	Integral Action Windup 155
4.2.6	Tuning of P, PI and PID Controllers 155
4.2.6.1	Step Response Controller Tuning 158
4.2.6.2	Frequency Response Controller Tuning 159
4.2.6.3	Closed-Loop Trial-and-Error Controller Tuning 160
4.2.7	Feedforward Control 160
4.2.8	Other Simple Controllers 162
4.2.8.1	On/Off Deadband Control 162
4.2.8.2	Simple Nonlinear and Adaptive Controllers 162
4.3	Cascade Arrangement of Controllers 163
4.4	Ratio Control 164
4.5	Split Range Control 165
4.6	Control of a Calculated Variable 165
4.7	Use of High Selector or Low Selector on Measurement Signals 168
4.8	Overrides: Use of High Selector or Low Selector on Control
	Action Signals 168
4.9	Clipping, Interlocks, Trips and Latching 170
4.10	Valve Position Control 171
4.11	Advanced Level Control 172
4.12	Calculation of Closed-Loop Responses: Process Model with
	Control Element 173
4.12.1	Closed-Loop Simulation by Numerical Techniques 174
4.12.2	Closed-Loop Simulation Using Laplace Transforms 176
1.12.2	References 177
	References 177
5	Control Strategy Design for Processing Plants 179
5.1	General Guidelines to the Specification of an Overall Plant Control Scheme 180
5.2	Systematic Approaches to the Specification of an Overall Plant Control Scheme 180
5.2.1	Structural Synthesis of the Plant Control Scheme 181
5.2.2	Controllability and Observability 184
5.2.3	Morari Resiliency Index 188
5.2.4	Relative Gain Array (Bristol Array) 191
5.3	Control Schemes Involving More Complex Interconnections of Basic Elements 193
5.3.1	Boiler Drum-Level Control 193
5.3.1.1	Note on Boiler Drum-Level Inverse Response 194
5.3.2	Furnace Full Metering Control with Oxygen Trim Control 195
5.3.3	Furnace Cross-Limiting Control 196
0.0.0	References 198
	ACICICICES 170

6	Estimation of Variables and Model Parameters from Plant Data 199
6.1	Estimation of Signal Properties 199
6.1.1	Calculation of Cross-Correlation and Autocorrelation 199
6.1.2	Calculation of Frequency Spectrum 202
6.1.3	Calculation of Principal Components 203
6.2	Real-Time Estimation of Variables for Which a Delayed Measurement Is
	Available for Correction 205
6.3	Plant Data Reconciliation 208
6.4	Recursive State Estimation 211
6.4.1	Discrete Kalman Filter 213
6.4.2	Continuous Kalman–Bucy Filter 220
6.4.3	Extended Kalman Filter 222
6.5	Identification of the Parameters of a Process Model 225
6.5.1	Model Identification by Least-Squares Fitting to a Batch of
	Measurements 227
6.5.2	Model Identification Using Recursive Least Squares on Measurements 229
6.5.3	Some Considerations in Model Identification 233
6.5.3.1	Type of Model 233
6.5.3.2	Forgetting Factor 239
6.5.3.3	Steady-State Offset 240
6.5.3.4	Extraction of Physical Parameters 241
6.5.3.5	Transport Lag (Dead Time) 243
6.6	Combined State and Parameter Observation Based on a System of Differential
0.0	and Algebraic Equations 243
6.7	Nonparametric Identification 246
6.7.1	Impulse Response Coefficients by Cross-Correlation 246
6.7.2	Direct RLS Identification of a Dynamic Matrix (Step Response) 247
	References 250
7	Advanced Control Algorithms 251
7.1	Discrete z-Domain Minimal Prototype Controllers 251
7.1.1	Setpoint Tracking Discrete Minimal Prototype Controller 251
7.1.2	Setpoint Tracking and Load Disturbance Suppression with a Discrete
	Minimal Prototype Controller (Two-Degree-of-Freedom Controller) 255
7.2	Continuous s-Domain MIMO Controller Decoupling Design by Inverse
	Nyquist Array 256
7.3	Continuous s-Domain MIMO Controller Design Based on Characteristic Loci 259
7.4	Continuous s-Domain MIMO Controller Design Based on Largest Modulus 260
7.5	MIMO Controller Design Based on Pole Placement 261
7.5.1	Continuous s-Domain MIMO Controller Design Based on Pole Placement 261
7.5.2	Discrete z-Domain MIMO Controller Design Based on Pole Placement 264
7.5.2 7.6	State-Space MIMO Controller Design 266
7.6.1	Continuous State-Space MIMO Modal Control: Proportional Feedback 266
7.6.2	Discrete State-Space MIMO Modal Control: Proportional Feedback 267
7.6.3	Continuous State-Space MIMO Controller Design Based on 'Controllable
, .0.0	System' Pole Placement 267

7.6.4	Discrete State-Space MIMO Controller Design Based on 'Controllable
7.6.5	System' Pole Placement 270 Discrete State Space MIMO Controller Design Using the Linear Quadratic
7.0.5	Discrete State-Space MIMO Controller Design Using the Linear Quadratic Regulator Approach 271
7.6.6	Continuous State-Space MIMO Controller Design Using the Linear Quadratic Regulator Approach 277
7.7	Concept of Internal Model Control 279
7.7.1	A General MIMO Controller Design Approach Based on IMC 280
7.8	Predictive Control 282
7.8.1	Generalised Predictive Control for a Discrete z-Domain MIMO System 283
7.8.1.1	GPC for a Discrete MIMO System Represented by z-Domain Polynomials
	(Input–Output Form) 284
7.8.1.2	Predictive Control for a Discrete MIMO System Represented in the State Space 289
7.8.2	Dynamic Matrix Control 291
7.8.2.1	•
7.8.2.2	Quadratic Dynamic Matrix Control in Industry 298
7.8.2.3	Recursive Representation of the Future Output 298
7.8.2.4	Dynamic Matrix Control of an Integrating System 300
7.8.2.5	Dynamic Matrix Control Based on a Finite Impulse Response 303
7.8.3	Approaches to the Optimisation of Control Action Trajectories 305
7.8.3.1	
7.8.3.2	•
7.8.3.3	Interior Point Method and Barrier Functions 311
7.8.3.4	Iterative Dynamic Programming 312
7.8.3.5	Forward Iterative Dynamic Programming 316
7.8.3.6	Iterative Dynamic Programming Based on a Discrete Input-Output
	Model Instead of a State-Space Model 318
7.9	Control of Time-Delay Systems 320
7.9.1	MIMO Closed-Loop Control Using a Smith Predictor 321
7.9.2	Closed-Loop Control in the Presence of Variable Dead
	Time 322
7.10	A Note on Adaptive Control and Gain Scheduling 323
7.11	Control Using Artificial Neural Networks 324
7.11.1	Back-propagation Training of an ANN 324
7.11.2	Process Control Arrangements Using ANNs 326
7.12	Control Based on Fuzzy Logic 328
7.12.1	Fuzzy Relational Model 330
7.12.2	Fuzzy Relational Model-Based Control 334
7.13	Predictive Control Using Evolutionary Strategies 337
7.14	Control of Hybrid Systems 341
7.14.1	Process Control Representation Using Hybrid Petri Nets 342
7.14.2	Process Control Representation Using Hybrid Automata 345
7.14.3	Mixed Logical Dynamical Framework in Predictive Control 350
7.15	Decentralised Control 358
	References 364

8	Stability and Quality of Control 367
8.1	Introduction 367
8.2	View of a Continuous SISO System in the s-Domain 369
8.2.1	Transfer Functions, the Characteristic Equation and Stability 369
8.2.1.1	Open-Loop Transfer Functions 369
8.2.1.2	Angles and Magnitutes of s and $G_O(s)$ 370
8.2.1.3	Open-Loop and Closed-Loop Stability 371
8.2.1.4	Open-Loop and Closed-Loop Steady-State Gain 373
8.2.1.5	Root Locus Analysis of Closed-Loop Stability 374
8.3	View of a Continuous MIMO System in the s-Domain 382
8.4	View of Continuous SISO and MIMO Systems in Linear State Space 383
8.5	View of Discrete Linear SISO and MIMO Systems 385
8.6	Frequency Response 386
8.6.1	Frequency Response from $G(j\omega)$ 387
8.6.2	Closed-Loop Stability Criterion in the Frequency Domain 391
8.6.3	Bode Plot 393
8.6.4	Nyquist Plot 396
8.6.5	Magnitude versus Phase-Angle Plot and the Nichols Chart 401
8.7	Control Quality Criteria 403
8.8	Robust Control 404
	References 408
9	Optimisation 409
9.1	Introduction 409
9.2	Aspects of Optimisation Problems 409
9.3	Linear Programming 412
9.4	Integer Programming and Mixed Integer Programming (MIP) 418
9.5	Gradient Searches 421
9.5.1	Newton Method for Finding a Minimum or a Maximum 421
9.5.2	Downhill Simplex Method 422
9.5.3	Methods Based on Chosen Search Directions 423
9.5.3.1	Steepest Descent Method 425
9.5.3.2	Conjugate Gradient Method 427
9.6	Nonlinear Programming and Global Optimisation 429
9.6.1	Global Optimisation by Branch and Bound 429
9.7	Combinatorial Optimisation by Simulated Annealing 432
9.8	Optimisation by Evolutionary Strategies 434
9.8.1	Reactor Design Example 435
9.8.2	Non-dominated Sorting Genetic Algorithm (NSGA) 437
9.9	Mixed Integer Nonlinear Programming 441
9.9.1	Branch and Bound Method 442
9.9.2	Outer Approximation Method (OA) 443
9.9.3	Comparison of Other Methods 444
9.10	The GAMS® Modelling Environment 444
9.11	Real-Time Optimisation of Whole Plants 449
	References 454