

Contents

Preface — vii

Zhihong Zhang, Qingming Luo

1	Fluorescent Protein Labeling Techniques — 1
1.1	Introduction — 1
1.2	Fluorescent proteins and their mutants — 2
1.2.1	Colorful fluorescent proteins — 3
1.2.2	Fluorescent proteins with LSSs — 6
1.2.3	Photon-activatable and photon-switchable fluorescent proteins — 7
1.2.4	Light-sensitive fluorescent proteins — 9
1.2.5	Timer fluorescent protein — 10
1.3	Reporter fluorescent protein probes — 11
1.3.1	Tracking proteins in live cells — 11
1.3.2	Monitoring of gene expression in live cells — 14
1.3.3	Biological applications of photon-switchable proteins and photon-activatable proteins — 15
1.4	Functional fluorescent protein probes — 18
1.4.1	Redox probes — 18
1.4.2	ATP fluorescent protein probes — 21
1.4.3	pH probes — 22
1.4.4	Voltage-sensitive probes — 24
1.4.5	Calcium probes — 26
1.4.6	Mercury ion probes — 30
1.4.7	Copper ion probes — 30
1.4.8	Zinc ion probes — 31
1.5	Fluorescence resonance energy transfer (FRET) probes — 32
1.5.1	Introduction of FRET — 32
1.5.2	FRET imaging in cell biology research — 34
1.5.3	Intramolecular FRET probes — 36
1.5.4	Intermolecular FRET probes — 40
1.6	BiFC technology based on fluorescent proteins — 43
1.6.1	Establishment of the BiFC detection method — 43
1.6.2	Characteristics of BiFC technology — 44
1.6.3	Applications of BiFC technology — 46
1.6.4	Quantitative detection of protein interaction based on fluorescence signal of BiFC — 48
1.6.5	Limiting factors of bimolecular fluorescent complementation — 48
1.6.6	Outlook for BiFC — 49
1.7	Intravital applications of fluorescent proteins in tumor imaging — 49

1.7.1	In vivo tumor optical imaging based on endogenously expressed fluorescent protein — 50
1.7.2	Optical imaging of tumor <i>in vivo</i> with targeting FP probes — 59
1.7.3	Prospects — 62
1.8	Applications of fluorescent protein transgenic mice in intravital immune optical imaging — 63
1.8.1	Fluorescent protein transgenic animal models — 63
1.8.2	Applications of fluorescent protein-labeled pathogens in infection and immune imaging — 68
	Bibliography — 74

Yu Li, Lingyu Zeng, Zhihong Liu, Jingui Qin

2	Two-photon Molecular Probe — 93
2.1	Introduction of two-photon absorption — 93
2.1.1	The basic concept of 2PA — 93
2.1.2	Measurements of 2PA effect — 96
2.1.3	Introduction to application of 2PA effect — 99
2.2	Molecular design and structure–property relationships of organic TPA materials — 103
2.2.1	One-dimensional asymmetric D–π–A molecules — 104
2.2.2	One-dimensional symmetric molecules — 107
2.2.3	Porphyrins and expanded porphyrinoids — 112
2.2.4	Multidimensional branched 2PA materials — 116
2.3	The development of two-photon fluorescent probes — 119
2.3.1	Brief introduction to response principle of fluorescent probes — 120
2.3.2	Traditional fluorescent probes for two-photon imaging — 122
2.3.3	Typical fluorophores for TP probes — 122
2.3.4	Research development of TP probes — 125
2.3.5	Research prospect of TP probes — 181
	Acknowledgment — 186
	Bibliography — 186

Zhenli Huang, Yina Wang, Fan Long, Zhe Hu, Zeyu Zhao

3	Super-resolution Localization Microscopy — 194
3.1	Introduction and background — 194
3.1.2	Resolution limit of optical microscope — 196
3.1.3	Improving the resolution of optical microscope — 197
3.1.4	A historical overview of super-resolution localization microscopy — 197
3.1.5	Breaking the resolution limit by single-molecule localization — 199
3.2	Fluorescence probes for super-resolution localization microscopy — 200
3.2.1	Ensemble and single-molecule fluorescence — 200

3.2.2	Fluorescence probes and specific labeling — 202
3.2.3	Fluorescence ON/OFF control — 204
3.2.4	Choosing the right fluorescence probes — 205
3.3	Methods and instrumentation in super-resolution localization microscopy — 208
3.3.1	Super-resolution localization microscopy methods: PALM versus STORM — 208
3.3.2	Super-resolution localization microscopy methods: Others — 210
3.3.3	Instrumentation in super-resolution localization microscopy: Basic structure — 210
3.3.4	Instrumentation in super-resolution localization microscopy: Key components — 211
3.3.5	Instrumentation in super-resolution localization microscopy: A typical setup — 214
3.3.6	Advances in super-resolution localization microscopy: Multicolor and 3D imaging — 216
3.3.7	Commercial super-resolution localization microscopes — 217
3.4	Data analysis in super-resolution localization microscopy — 218
3.4.1	Theoretical localization precision — 218
3.4.2	Practical aspects for determining spatial resolution — 219
3.4.3	Single-molecule localization for sparse emitters — 220
3.4.4	Single-molecule localization for high-density emitters — 223
3.4.5	Key steps in image analysis and reconstruction — 225
3.4.6	Data analysis software — 226
3.5	Example applications in super-resolution localization microscopy — 227
3.5.1	Imaging in 2D — 227
3.5.2	Imaging in 3D — 228
3.6	Conclusions and future prospects — 229
	Bibliography — 230

Da Xing, Sihua Yang

4	Photoacoustic Molecular (Functional) Imaging — 235
4.1	Introduction — 235
4.2	PAI principle, algorithm, and system — 238
4.2.1	PAI principle — 238
4.2.2	Excitation of photoacoustic signal — 239
4.2.3	Photoacoustic scanning method and its imaging algorithm — 247
4.2.4	PAI system — 254
4.2.5	Special problems involved — 270
4.3	Domestic and foreign statuses — 275
4.3.1	Foreign research status — 275
4.3.2	Domestic research status — 286

4.4	Application development trend — 298
4.4.1	Application research of photoacoustic microcirculation imaging and early tumor detection and treatment monitoring — 299
4.4.2	Research on application of living body photoacoustic blood function parameters (blood oxygen and carbon oxygen saturation) detection — 306
4.4.3	Application research on photoacoustic identification and imaging of vulnerable plaque components in blood vessels — 309
4.4.4	Application research on thermoacoustic imaging in testing of low-dentistry foreign bodies — 313
4.4.5	Application research on thermoacoustic imaging in testing of breast cancer — 315
	Bibliography — 318

Yong Deng, Xiaoquan Yang, Qingming Luo

5	Optical Molecular Imaging for Small Animals <i>in vivo</i> — 324
5.1	Models of light propagation in tissue — 324
5.1.1	Introduction — 324
5.1.2	Light transport equation — 325
5.1.3	Diffusion approximation method — 329
5.1.4	Monte Carlo method — 333
5.2	Diffuse optical tomography — 343
5.2.1	Introduction — 343
5.2.2	DOT mode — 344
5.2.3	Image reconstruction methods in DOT — 348
5.2.4	Applications in biomedical research — 352
5.3	<i>In vivo</i> optical molecular imaging of small animals — 354
5.3.1	Introduction — 354
5.3.2	Planar fluorescence molecular imaging — 355
5.3.3	Fluorescence molecular tomography — 361
5.3.4	Bioluminescence tomography — 370
5.4	Multimodality molecular imaging of small animals <i>in vivo</i> — 375
5.4.1	Introduction — 375
5.4.2	Multimodality molecular imaging systems — 376
5.4.3	Image reconstruction and multimodal image fusion — 382
5.4.4	Applications in biomedical research — 387
	Bibliography — 393