Contents

Preface ---- V

1	Polymeric surfactants and colloid stability – general introduction — 1
1.1	Polymeric surfactants in disperse systems — 1
1.2	Polymers (macromolecules) — 2
1.3	Single chain conformations — 4
1.4	Polymer properties —— 5
1.5	Outline of the book —— 6
2	General classification of polymeric surfactants —— 11
2.1	Homopolymers —— 11
2.2	Random copolymers —— 11
2.3	Block and graft copolymers —— 12
2.4	Polymeric surfactants based on polysaccharides —— 13
2.5	Natural polymeric biosurfactants —— 17
2.6	Silicone surfactants — 19
2.7	Polymeric surfactants for nonaqueous dispersions —— 20
2.8	Polymerizable surfactants —— 22
3	Solution properties of polymeric surfactants —— 25
3.1	Polymer conformation and structure —— 25
3.2	Free energy of mixing of polymer with solvent -
	the Flory-Huggins theory —— 26
3.3	Viscosity measurements for characterization
	of a polymer in solution —— 31
3.4	Phase separation of polymer solutions —— 33
3.5	Solubility parameter concept for selecting the right solvent
	for a polymer —— 34
4	Adsorption and conformation of polymeric surfactants at interfaces — 37
4.1	Introduction —— 37
4.2	Polymers at interfaces —— 38
4.3	Theories of polymer adsorption —— 42
4.4	Scaling theory for polymer adsorption —— 50
4.5	Experimental techniques for studying polymeric
	surfactant adsorption —— 52
4.6	Measurement of the adsorption isotherm —— 52
4.7	Measurement of the fraction of segments p — 53

4.8	Determination of the segment density distribution $\rho(z)$
	and adsorbed layer thickness δ_h — 53
4.9	Examples of the adsorption isotherms of nonionic
	polymeric surfactants — 56
4.10	Adsorbed layer thickness results —— 60
4.11	Kinetics of polymer adsorption —— 62
5	Stabilization of disperse systems using polymeric surfactants — 65
5.1	Introduction —— 65
5.2	Interaction between particles or droplets
	containing adsorbed polymer layers —— 65
5.2.1	Mixing interaction G _{mix} —— 66
5.2.2	Elastic interaction G _{el} —— 68
5.2.3	Total energy of interaction —— 69
5.2.4	Criteria for effective steric stabilization —— 70
5.3	Measurement of steric repulsion between adsorbed layers
	of polymeric surfactants — 70
5.3.1	Surface force methods — 70
5.3.2	Atomic Force Microscopy (AFM) measurements —— 73
6	Flocculation of disperse systems containing adsorbed
	polymeric surfactants — 79
6.1	Introduction — 79
6.2	Weak (reversible) flocculation —— 79
6.3	Incipient flocculation —— 83
6.4	Depletion flocculation —— 85
6.5	Bridging flocculation by polymers and polyelectrolytes —— 86
7	Polymeric surfactants for stabilization of emulsions
	and nanoemulsions —— 91
7.1	Introduction —— 91
7.2	Polymeric surfactants for prevention of emulsion
	and nanoemulsion flocculation —— 92
7.3	Polymeric surfactants for reduction of Ostwald ripening —— 94
7.4	Polymeric surfactants for reducing (or eliminating) coalescence —— 101
8	Polymeric surfactants for stabilizing suspensions —— 113
8.1	Introduction —— 113
8.2	Examples of polymeric surfactants for aqueous suspensions —— 114
8.3	Criteria for effective stabilization of suspensions —— 117
8.4	Polymeric surfactants for stabilizing preformed
-· •	latex dispersions —— 119

8.5	Polymeric surfactants for stabilizing aqueous suspensions of hydrophobic organic particles —— 122
8.6	Assessment of the long-term physical stability of suspensions —— 123
8.6.1	Assessment of the structure of the solid/liquid interface — 124
8.6.2	Bulk properties of suspensions —— 125
9	Polymeric surfactants in emulsion and dispersion polymerization —— 139
9.1	Introduction —— 139
9.2	Emulsion polymerization —— 139
9.3	Dispersion polymerization —— 149
10	Polymeric surfactants in pharmacy —— 157
10.1	Introduction —— 157
10.2	PVP/SDS system for stabilizing nanosuspensions of drugs —— 157
10.3	Poloxamers for stabilizing suspensions and emulsions in pharmacy —— 170
10.4	Polymeric surfactants for the preparation of nanoparticles
	for drug delivery —— 172
11	Polymeric surfactants in cosmetics and personal care products —— 195
11.1	Introduction —— 195
11.2	Stabilization of O/W and W/O emulsions
	using polymeric surfactants —— 195
11.3	Use of polymeric surfactants for stabilizing nanoemulsions in cosmetics —— 199
11.4	Stabilizing nonaqueous dispersions for sunscreens —— 207
11.5	Use of polymeric surfactants for stabilizing liposome and vesicles —— 220
11.6	Polymeric surfactants in multiple emulsions —— 224
12	Polymeric surfactants in paints and coatings —— 231
12.1	Introduction —— 231
12.2	Use of polymeric surfactants in emulsion polymerization —— 231
12.3	Use of polymeric surfactants for stabilizing preformed
	latex particles —— 235
12.4	Dispersion polymerization —— 238
13	Polymeric surfactants in agrochemicals —— 243
13.1	Introduction —— 243
13.2	Polymeric surfactants in suspension concentrates (SCs) —— 243
13.3	Emulsion concentrates (EWs) —— 252

XI	 C	
All	 L.OI	ntents

13.4	Suspoemulsions —— 255
13.5	Oil-based suspension concentrates —— 258
14	Polymeric surfactants in the food industry —— 261
14.1	Introduction —— 261
14.2	Structure of proteins —— 262
14.3	Interfacial properties of proteins at the liquid/liquid interface —— 264
14.4	Proteins as emulsifiers —— 265
14.5	Protein-polysaccharide interactions in food colloids —— 265
14.6	Polysaccharide-surfactant interactions —— 267
14.7	Emulsion stability using polymeric surfactants —— 268
Index	