

Contents

Preface — v

About the editor — vi

List of contributing authors — xi

Prasanta Sahoo and Suman Kalyan Das

1	Tribological Materials – An Ecosustainable Perspective — 1
1.1	Introduction — 1
1.2	Concept of ecofriendly tribology — 2
1.2.1	Monitoring and minimization of carbon footprint — 3
1.2.2	Energy consumption — 4
1.2.3	Economic analysis — 5
1.3	Materials for tribology and surface engineering techniques — 6
1.3.1	Use of natural products — 6
1.3.2	Surface modification techniques — 10
1.4	Ecofriendly lubricants — 12
1.4.1	Vegetable oils — 13
1.4.2	Additives for ecofriendly lubricants — 14
1.4.3	Ionic lubricants — 16
1.4.4	Ecofriendly solid lubricants — 19
1.5	Implementation of reusable techniques — 20
1.5.1	Reutilization of used lubrication oil — 20
1.5.2	Utilization of waste cooking oil as lubricant — 20
1.5.3	Recycling of waste Ni–Cd batteries into greases — 21
1.6	Development of efficient systems — 22
1.6.1	Minimization of losses — 22
1.6.2	Regenerative design — 23
1.7	Use of biomimetic techniques and materials — 23
1.8	Implementation of optimization techniques — 25
1.9	Monitoring of tribological systems — 27
1.9.1	Improving device service life — 27
1.9.2	Targeting toward low maintenance systems — 28
1.10	Stress on computer simulation in design wherever possible — 29
1.11	Stop reinventing the wheel/research duplication — 31
1.11.1	Need for coordinated research and knowledge transfer — 31
1.12	Industry–academia partnerships — 32
1.12.1	Awareness about new generation (efficient) technologies — 32
1.12.2	Troubleshooting of existing problems — 32
1.13	Closure — 33
	References — 34

Enzhu Hu, Dongrui Yu, Kunhog Hu and Xianguo Hu

**2 Preparation and Tribology Performance
of Bio-based Ceramic Particles from Rice Waste — 39**

- 2.1 Introduction — 39
- 2.2 Preparation and characterization — 40
- 2.3 Characterization of tribology — 48
- 2.4 Wear and friction mechanism — 61
- 2.5 Conclusions — 62
- 2.6 Acknowledgments — 62
- 2.7 References — 62

Jinjun Lu, Wanxiu Hai, Junhu Meng and Shufang Ren

**3 Tribological Behavior and Tribocommistry of Ti_3SiC_2 in Water
and Alcohols — 65**

- 3.1 Introduction — 65
- 3.2 Tribological behavior of Ti_3SiC_2 in water and alcohols — 66
 - 3.2.1 Lubrication regime — 67
 - 3.2.2 Tribological behavior in water — 68
 - 3.2.3 Tribological behavior in alcohols — 68
 - 3.2.4 Comparison of tribological behavior in water and alcohols — 69
 - 3.2.5 Lubricating additive for water and alcohols — 69
- 3.3 Tribocommistry — 70
- 3.4 Abrasive-free polishing of Ti_3SiC_2 in water — 71
- 3.5 Concluding remarks — 71
 - 3.5.1 Acknowledgment — 72
 - 3.5.2 References — 72

S. Baskar, G. Sriram, S. Arumugam and J. Paulo Davim

**4 Modelling and Analysis of the Oil-Film Pressure of a Hydrodynamic
Journal Bearing Lubricated by Nano-based Biolubricants Using
a D-Optimal Design — 73**

- 4.1 Introduction — 73
- 4.2 Experimental details — 75
 - 4.2.1 Synthesis of a nano-based biolubricant — 75
 - 4.2.2 Experimental design and procedure — 76
 - 4.2.3 Development of a mathematical model — 78
- 4.3 Results and discussion — 80
 - 4.3.1 Analysis of the developed quadratic model — 80
 - 4.3.2 Optimization of the oil-film pressure of lubricants using the desirability analysis — 81
- 4.4 Confirmation tests — 82

4.5	Analysis of the oil-film pressure — 82
4.6	Scanning electron microscopic analysis of worn surfaces — 87
4.7	Conclusions — 87
	Acknowledgment — 90
	References — 90

Umar Nirmal, Jamil bin Hashim and M.M.H. Megat Ahmad

5 Wear Performance of Oil Palm Seed Fibre-Reinforced Polyester (OpSeFRP) Composite Aged in Brake Fluid Solutions — 93

5.1	Introduction — 93
5.2	Materials preparation — 95
5.2.1	Preparation of fibres — 95
5.2.2	Preparation of composite — 95
5.3	Experimental procedure — 99
5.4	Results and discussions — 101
5.4.1	Wear performance — 101
5.4.2	Friction performance — 104
5.4.3	Temperature performance — 106
5.4.4	Surface roughness analysis — 108
5.4.5	Morphology analysis of the worn samples — 112
5.5	Conclusion — 118
	References — 119

Index — 121