

Contents

Part I Scheduling Problems in Grid Computing

1	Scheduling Problems in Hierarchical Grid Environment	3
1.1	Introduction	3
1.2	Grid Types and Multilevel Architecture	5
1.2.1	Types of Grids	5
1.2.2	Multi-Level Hierarchical Grid Architecture	7
1.3	Users' Layer in the Grid System	8
1.3.1	Main Types of Grid Users	9
1.3.2	Grid End Users' Requirements for Scheduling	12
1.4	Scheduling Attributes and Problem Types	13
1.4.1	Scheduling Attributes	13
1.4.2	Grid Scheduling Notation and Criteria	15
1.5	Summary	17
2	Independent Batch Scheduling: ETC Matrix Model and Grid Simulator	19
2.1	Introduction	19
2.2	Expected Time to Compute (ETC) Matrix Model	20
2.2.1	Schedule Representation	22
2.2.2	Scheduling Criteria	23
2.3	Main Concept of the Grid Simulator: <i>Sim-G-Batch</i>	24
2.3.1	Basic Concept of <i>Sim-G-Batch</i>	25
2.3.2	Key Parameters	26
2.3.3	Heuristic Schedulers Integrated with the Simulator	27
Part II	Multi-Level Genetic-Based Hierarchical Grid Schedulers	
3	A Multi-Level Genetic Scheduling in Dynamic Grid Reinforced by the Population Hierarchy: Basic Model	33
3.1	Introduction	33

3.2	Hierarchic Genetic Strategy Based Scheduler (<i>HGS-Sched</i>)	35
3.2.1	<i>HGS-Sched</i> Essentials	35
3.3	Genetic Mechanism in <i>HGS-Sched</i> Branches	40
3.4	Summary	42
4	Hierarchic vs. Single-Population and Hybrid Metaheuristic Grid Schedulers: A Comparative Empirical Study	45
4.1	Introduction	45
4.2	The Settings of the Grid Simulator and Scheduler Performance Measures	47
4.2.1	The Measures of the Schedulers Performance	47
4.3	The Evaluation of HGS-Sched on Static Benchmark for the Small-Size Grid	48
4.3.1	The Benchmark Description	49
4.3.2	Tuning of GA Operators for HGS-Sched	49
4.3.3	The Comparative Analysis of Single-Population and Hierarchical Genetic Schedulers in Static Scheduling in Small-Area Grid Cluster	51
4.4	The Empirical Study in Large-Scale Static and Dynamic Instances	55
4.4.1	The Tuning the GA Engine	55
4.4.2	The Empirical Evaluation of Single-, Multi-Population and Hybrid Genetic-Based Schedulers in Static and Dynamic Scenarios	57
4.5	Summary	77

Part III Security-Driven Scheduling Model for Computational Grid Using Multi-Level Genetic Metaheuristics

5	Security-Aware Independent Batch Scheduling in Computational Grids	81
5.1	Introduction	81
5.2	Related Work	82
5.3	Security as Scheduling Criterion in Computational Grids	84
5.3.1	Scheduling Scenarios and Objectives	87
5.4	Artificial Neural Network Module	89
5.5	Empirical Evaluation of the Genetic Metaheuristics	91
5.5.1	Security Aware Sim-G-Batch Grid Simulator	92
5.5.2	Performance Measures	94
5.5.3	Tuning the Genetic Engine for Multi-Population Batch Schedulers	95
5.5.4	Evaluation of Multi-Population and Hybrid Genetic Metaheuristics	107
5.6	Conclusions	111

6 Game-Theoretical Models of the Grid User Decisions in Security-Assured Scheduling: Basic Principles and Heuristic-Based Solutions	113
6.1 Introduction	113
6.2 Users' Behavior Models in Grid Scheduling	115
6.3 Symmetric and Asymmetric Games of Independent Grid Users	116
6.3.1 Non-cooperative Symmetric Game	116
6.3.2 Asymmetric Scenario – Stackelberg Game	118
6.3.3 Task Execution Cost	120
6.3.4 Resource Utilization Cost	121
6.3.5 Security-Assurance Cost	122
6.4 Solving the Grid Users Games	123
6.4.1 Genetic Hybrid Metaheuristic Solvers	124
6.5 Empirical Analysis	128
6.5.1 Computational Economy and Game-Based Models	131
6.6 Conclusions	135
Part IV Genetic Solutions to Green Scheduling in Computational Grids	
7 Evolutionary Inspired Solutions for Energy Management in Green Computing: State-of-the-Arts	139
7.1 Taxonomy of Energy Management in Modern Distributed Computing Systems	139
7.2 Evo-Driven Static Energy Optimizers in Embedded Systems	142
7.3 Evolutionary Inspired Dynamic Data and Resource Management	143
7.3.1 Dynamic Voltage and Frequency Scaling in Energy-Aware Resource Allocation and Scheduling in Distributed Computing Systems	144
7.3.2 Energy Efficient Data Transmission	146
7.3.3 The Workload Placement Problem – The Data Aggregation	149
7.4 Conclusions	151
8 Energy-Aware Scheduling of Independent Tasks in Computational Grids	155
8.1 Introduction	155
8.2 Energy Model	156
8.3 Scheduling Scenarios and Objectives	159
8.3.1 Makespan Optimization	159
8.3.2 Energy Optimization	160
8.4 Empirical Analysis	161
8.4.1 Energy Aware Genetic-Based Batch Schedulers	162
8.4.2 Results	165
8.5 Summary	175
Summary	177
References	179
Index	189