Contents

1	Introduction	1
2	Tectonical-Geophysical Setting of the Caucasus	5
	2.1 The Origin of the Caucasus, Geological Evolution	
	and Main Features	5
	2.1.1 Giscaucasus	8
	2.1.2 The Greater Caucasus	9
	2.1.3 The Transcaucasus	11
	2.1.4 The Lesser Caucasus	12
	2.2 A Brief History of Geophysical Studies in the Caucasus	16
	2.2.1 Initial Stage	16
	2.2.2 Formative Stage	18
	2.2.3 Contemporary Period	26
	2.3 The Caucasus in the Light of Regional Geophysical Analysis	29
3	Mothedelesical Charifrities of Coombusical Ctudies	
3	Methodological Specificities of Geophysical Studies	39
	in the Complex Environments of the Caucasus	39
	3.1 Specifics of Media and Geophysical Studies	39
	3.1.1 Main Features: Advantages of Natural Field Studies	
	3.1.2 General Characteristics of the Targets and Host Media	42
	3.1.3 Typical Geophysical Noise Effects Under Mountainous	10
	Conditions	46
	3.2 Terrain Correction and Utilization of Topography for Extraction	<i>5</i> 1
	of Geological Information	51
	3.2.1 Problem of Terrain Correction: Two Aspects	~ 1
	of This Problem	51
	3.2.2 Common Correction Techniques for Different	
	Measurement Heights	55
	3.2.3 Reduction to Line	59
	3.2.4 Correlation Technique for Terrain Correction	62
	3.3 Elimination of Field Variations with Time	80

x Contents

3.4	Inverse Problem Solution in Complex Environments:	
	The Example of a Magnetic Field	82
	3.4.1 Characteristic Point Method	83
	3.4.2 Tangent Method	84
	3.4.3 Interpretation of Magnetic Anomalies	
	on an Inclined Surface	86
3.5	Inversion of Other Natural (Gravity, Temperature, Self-Potential,	
	and Seismicity) Fields	87
	3.5.1 Gravity Field	87
	3.5.2 Temperature Field	90
	3.5.3 Self-Potential Field	92
	3.5.4 Seismicity Field	94
3.6	Inversion of Artificial and Quasi-Natural (Resistivity,	
	Induced Polarization, Very Low Frequency) Fields	95
	3.6.1 Resistivity	95
	3.6.2 Induced Polarization	96
	3.6.3 VLF	99
3.7	Information and Probabilistic Interpretation Methods	
	for the Detection of Hidden Targets	101
	3.7.1 Entropy and Information	101
	3.7.2 Information-Statistical Techniques for the Analysis	
	of Single Geophysical Fields	103
3.8	Integrated Interpretation	114
	3.8.1 Combined Information Formalization	
	of Geophysical-Geological Processes	115
	3.8.2 Multimodel Approach to Geophysical Data Analysis	
	(on Example of Magnetic Data Analysis)	119
	3.8.3 Variants of Integrated Interpretation	120
	3.8.4 Classification by Logical-Statistical (Information-Statistical)	
	Techniques	125
	3.8.5 Pattern Recognition by Standard and Control Sets	
	of Targets	126
	3.8.6 Classification of Targets into Compact Groups	
	in an Indicator Space	127
	3.8.7 Revealing Targets (Classes of Targets) with	
	Expected Properties	128
3.9	Choice of Geophysical Integration Elements	
	and Their Quantity	132
	3.9.1 General Considerations	132
	3.9.2 Evaluation of Single Geophysical Method Efficiency	133
	3.9.3 Estimating Information by Indicator (Field) Gradations	134
	3.9.4 Estimating Geophysical Integration Efficiency	
	Using Type I and Type II Error Probabilities	136
	3.9.5 Minimization of the Number of Combined Methods	
	by Solving the "Four Colors Problem"	131

Contents xi

4	Regional Physical-Geological Models and Regioning	139
	4.1 Utilization of Available Geological, Petrophysical	
	and Geophysical Data	139
	4.1.1 Use of Geological Data	139
	4.1.2 Use of Petrophysical Data	140
	4.1.3 The Formation of an Indicator Space	152
	4.1.4 Common Characteristics of Petrophysical Boundaries	
	and Geological Associations	160
	4.2 Regional Geophysical Schemes	163
	4.2.1 Quantitative Analysis and Regioning	163
	4.2.2 Field Differentiation into Regional and Local Isotropic	
	Components	177
	4.3 3-D Combined Modeling of Gravity and Magnetic Fields	181
	4.3.1 Computation of Gravity Field Reductions	185
	4.3.2 Interactive Direct Problem Solution: Main Principles	187
	4.3.3 Computation of Gravity Reductions and Magnetic	
	Field as a Component-Wise Process	188
	4.3.4 Terrain Relief Calculation	190
	4.4 Models of the Earth's Crust Along Regional Traverses	194
	4.4.1 3D Combined Modeling of Gravity	
	and Magnetic Fields	194
	4.4.2 Examples of 3D Combined Modeling of Gravity	
	and Magnetic Fields Along Interpretation Profiles	198
	4.5 Deep Structure Maps and Their Prognostic Importance	212
	, r	
5	Mining Geophysics	219
	5.1 Petrophysical Examination of Ore Areas	220
	5.2 Borehole Logging	221
	5.3 Northern Caucasus	221
	5.3.1 Gravity	221
	5.3.2 VLF	225
	5.3.3 Electromagnetic Methods	225
	5.4 Southern Slope of the Greater Caucasus	227
	5.4.1 Physical-Geological Models of Ore Deposits	227
	5.4.2 Physical-Geological Model of a Pyrite-Polymetallic	
	Deposit of the Filizchay Type	228
	5.4.3 Gravity	229
	5.4.4 Induced Polarization	232
	5.4.5 VLF	235
	5.4.6 Near-Surface Temperature Survey	239
	5.4.7 Self-Potential Survey	241
	5.4.8 Magnetic Survey	242
	5.4.9 Electromagnetic Methods	242
	5.4.10 Integrated Analysis	244
	14.10 IIIEPIAICU AHAIVSIS	444

xii Contents

	5.5	Lesser Caucasus	245
		5.5.1 Self-Potential Survey	245
		5.5.2 Physical-Geological Model of the Copper-Pyrite	
		Deposit of the Lesser Caucasian Type	246
		5.5.3 Gravity	248
		5.5.4 Magnetic Survey	252
		5.5.5 Induced Polarization	253
		5.5.6 VLF	255
		5.5.7 Near-Surface Temperature Survey	256
		5.5.8 Electric and Electromagnetic Methods	257
		5.5.9 Simple Integrated Analysis	259
		5.5.10 Integrated Analysis of the Basis of PGM	259
	5.6	Underground Geophysics	260
		5.6.1 Gravity	261
		5.6.2 VLF	264
		5.6.3 Temperature Survey	264
		5.6.4 Self-Potential Survey	266
		5.6.5 Examples of Integrated Underground Observations	268
		5.6.6 Other Methods	268
	5.7	Further Perspectives of Mining Geophysics in the Caucasus	270
		5.7.1 Development of the Caucasian Mining	
		Geophysics Databases	270
		5.7.2 ROV Geophysical Surveys for the Delineation	
	,	of New Caucasian Ore Deposits	272
		5.7.3 Geophysical Examination of Old Caucasian	
		Mine Spoils	274
	5.8	Comparison of Regional Fault Dislocations and Distribution	
		of Useful Minerals	274
6	The	e Kura Depression and Adjacent Basins	275
		The Kura Depression	275
		6.1.1 Magnetic Survey	276
		6.1.2 Gravity Survey	276
		6.1.3 Thermal Data Analysis	279
		6.1.4 Radiometric Survey	281
		6.1.5 Integrated Analysis	282
	6.2	South Caspian Basin	282
		Other Basins	289
		6.3.1 Kusar-Divitchi Basin	289
		6.3.2 Ossetia Depression	289
		6 3 3 Taman and Kuban Basins	290

Contents xiii

7	Geo	ophysics in Hydrology	293
	7.1	Main Specifities of Geophysical Prospecting	
		in Hydrogeology	293
		7.1.1 Methodological Principles of Geophysical	
		Prospecting for Underground Waters	293
		7.1.2 Specificities of VES Data Interpretation	296
		7.1.3 Geophysical Specificities of Land Reclamation	
		and Irrigation Studies	299
		7.1.4 Methodology of Underground Water Geophysical	
		Prospecting in Mountain Areas	301
	7.2	Typical Geophysical Solutions to Hydrogeological Problems	304
		7.2.1 Discovering Fresh Water in the Northwestern	
		Foothills of the Greater Caucasus: The study	
		of Pebble Collectors	304
		7.2.2 Discovering Fresh Water in the Kura Depression: Aquifer	
		Characteristics and their Relation to Deep Structure	305
		7.2.3 Searching of Thermal Waters	309
		7.2.4 Detecting Fresh Water in Mountainous Areas	311
	7.3	Geophysical Investigations of the Caucasian Lakes	312
8	En	vironmental and Near-Surface Geophysics	315
		Investigations of Mud Volcanoes	315
		8.1.1 Geological, Geothermal and Seismic Specificities	315
		8.1.2 Gravity Prospecting	316
		8.1.3 Magnetic Prospecting	319
		8.1.4 Electric Prospecting and Radioactivity Mapping	320
		8.1.5 Relation Between Earthquakes	
		and Mud Volcano Eruptions	320
	8.2	Engineering Geophysics	321
		8.2.1 Monitoring of Oil-and-Gas Pipelines	321
		8.2.2 Investigation and Monitoring of Dams	322
		8.2.3 Geophysical and Structural-Geological Analysis	322
		8.2.4 Investigation of Geophysical Field Time Variations	323
	8.3	Archaeogeophysics	325
		8.3.1 Northern Caucasus	325
		8.3.2 The Lesser Caucasus	328
		8.3.3 Taman and Kuban Regions	329
		8.3.4 Transcaucasus	330
	8.4	Environmental Geophysics	331
		8.4.1 Landslide Geophysical Monitoring	331
		8.4.2 Study of Radioactive Parameters	333
		8.4.3 Revealing Ring Structures	

xiv Contents

9	Inv	estigation of Seismic Activity	337
		Earthquakes in the Caucasus: A Short Historical	
			337
	9.2	Studying Petrophysical Properties in Seismogenic	
		Regions	338
	9.3	Modern Geodynamic Events and Geophysical	
			339
		9.3.1 Gravity Temporary Tideless Variations	340
		9.3.2 Temporary Magnetic Variations Associated	
		with Geodynamic Events	341
		9.3.3 Electric Field Potential Gradient	343
		9.3.4 Laser Interferometer	344
		9.3.5 VLF and ULF Time Variations	344
		9.3.6 Radon Precursors	344
		9.3.7 Temperature Precursors	345
	9.4	Long-Term Seismicity Prognosis	346
		Algorithms for Geodynamic Event Prediction	347
		9.5.1 Thermoelastic Characteristics and Their Relationship	
		to Earthquakes	347
		9.5.2 Intraplate Seismicity Studies	347
		9.5.3 Areal Autocorrelation Analysis	348
		9.5.4 Geophysical Field Complexity as Factor	
		of Seismicity Prognosis	348
		9.5.5 Correlations Between the Magnetic Field and Seismicity	350
		9.5.6 Revealing Hidden Intersections of Linear Structures	350
		9.5.7 Pattern Recognition of Regional Seismicity	353
		9.5.8 Wavelet Packet Approach	354
		9.5.9 Earthquakes as a Strongly Nonlinear Event	35:
C	onclu	usion	359
R	efere	ences	36
In	dev		30°