

N. A. Alfutov

Stability of Elastic Structures

Translated by E. Evseev and V.B. Balmont

With 128 Figures

Springer

Table of Contents

1. Basic Theory of Elastic Stability	1
1.1 Equilibrium Paths for Deformed Systems	2
1.2 Stable and Unstable Equilibrium States	6
1.3 Bifurcation Points, Limit Points, and Critical Loads	12
1.4 Energy Criterion for Bifurcational Stability Loss	15
1.5 Homogeneous Linearized Equations	23
1.6 Supercritical Behavior of Elastic Structures	27
1.7 Stability of Elastic Structures Under Combined Loading: Boundary of Stability Region	31
1.8 On the Statement of Stability Problems for Thin-Walled Structures	37
2. Energy Method for the Solution of Stability Problems	45
2.1 Principle of Virtual Displacements	45
2.2 Variational Approaches in the Linear Theory of Elasticity	52
2.3 Two Basic Forms of the Energy Criterion for Bifurcational Stability Loss	56
2.4 Energy Criterion in Bryan Form	60
2.5 Energy Criterion in Timoshenko Form	67
2.6 Rayleigh–Ritz Method in Stability Analysis	72
2.7 The Galerkin Method and its Relationship to the Rayleigh–Ritz Method	77
3. Stability of Straight Columns	85
3.1 Statement of the Problem: Basic Linearized Equation	85
3.2 Examples of the Analytic Solution of the Basic Equation	94
3.3 Columns on Elastic Foundations and Elastic Supports	103
3.4 Stability of Self-Gravitating Column	110
3.5 Lateral Torsional Beam Buckling	121
3.6 The Influence of Transverse Shear Strains: Stability of Sandwich Struts	129

3.7	Method of Initial Parameters in Stability Analysis	135
4.	Stability of Plates	143
4.1	Statement of the Problem:	
	Basic Initial Relations	143
4.2	Basic Linearized Equation	152
4.3	Solution of Basic Equation for a Rectangular Plate	161
4.4	Solution of Basic Equation for a Circular Plate	173
4.5	Approximate Solutions of the Basic Linearized Equation	178
5.	Energy Method for the Study of the Stability of Plates	189
5.1	Energy Method for the Problem of Plate Bending:	
	Accounting for Shears	189
5.2	Application of the Energy Criterion in Bryan Form	194
5.3	The Energy Criterion in Timoshenko Form:	
	Thermoelasticity Problem of Plate Stability	198
5.4	Stability Criterion Statement	
	via Statically Admissible Initial Internal Forces	203
5.5	Examples of Applications of the Energy Method:	
	Influence of Transverse Shear	206
5.6	Stability of Plates under Local Loads	216
6.	Stability of Shells	221
6.1	Stability of Circular Ring	221
6.2	Basic Initial Relations for a Cylindrical Shell	239
6.3	Stability of Cylindrical Shell	
	Subjected to Axial Compression	252
6.4	Determination of Critical Value of External Pressure	258
6.5	Stability of Cylindrical Shell	
	Under Torsion and Transverse Bending	266
6.6	Stability of a Shell Stiffened by Elastic Frames	271
6.7	Determination of Critical Loads	
	Using the Stability Criterion in Timoshenko Form	278
7.	Nonlinear Problems: Stability of Real Bars, Plates, and Shells	287
7.1	Deformation of Compressed Bar After Stability Loss	287
7.2	Supercritical Behavior of Elastic Plates	294
7.3	Nonlinear Approaches in Stability Problems	
	for Shells	301
7.4	Initial Imperfections in Stability Problems	
	for Bars and Plates	308
7.5	Initial Imperfections in Stability Problems for Shells	315

A. Appendix	321
A.1 Eigenvalue Problems	321
A.2 Stationary Values and Extrema of Functions and Functionals	324
References	331
Index	335