Planck Scale Effects in Astrophysics and Cosmology

Contents

ı ıa	mer Scale Kinematics	
and	d the Pierre Auger Observatory	
R.	Aloisio, P. Blasi, A. Galante, A.F. Grillo	1
1	Motivations	1
2	Introduction	3
3	The Experimental Data	
	and the Pierre Auger Observatory	5
4	The Particle Production Thresholds	13
5	Discussion: Phenomenology,	
	and: Will CR Experiments Detect Lorentz Violations?	15
6	A More Speculative View:	
	Space-Time Indetermination	16
	6.1 The Effect of Space-Time Fluctuations	
	on the Propagation of High Energy Particles	16
	6.2 Astrophysical Observations	
	6.3 A Fluctuating Space-Time can Make	
	the World Unstable	22
	6.4 Discussion	25
Ref	erences	29
_		
	antum Gravity	0.1
_	Alvarez	
1	General Questions on Quantum Gravity	
2	The Issue of Background Independence	
3	The Canonical Approach	
4	Using Ashtekar and Related Variables	
	4.1 Big Results of this Approach	
5	Euclidean Quantum Gravity	
6	Perturbative (Graviton) Approach	
7	Strings	
	7.1 Big Results	47

	7.2	The Maldacena Conjecture	47
8	Dual	ities and Branes	48
9	Sum	mary: the State of the Art in Quantum Gravity	53
Ref	erenc	es	54
	_		
		ction to Quantum-Gravity Phenomenology	
G.		ino-Camelia	59
1		n "Quantum Gravity Beauty Contests"	
		uantum Gravity Phenomenology	59
2	Qua	ntum Gravity Phenomenology	61
	2.1	Planck-Scale Quantum Properties of Spacetime	61
	2.2	Identification of Experiments	63
	2.3	Prehistory of Quantum Gravity Phenomenology	65
	2.4	The Dawn of Quantum Gravity Phenomenology	67
	2.5	The Maturity of Quantum Gravity Phenomenology:	
		Test Theories	68
3	Som	e Candidate Quantum-Gravity Effects	69
	3.1	Planck-Scale Departures from Lorentz Symmetry	69
	3.2	Planck-Scale Departures from CPT Symmetry	70
	3.3	Distance Fuzziness	71
	3.4	Aside on the Differences Between Systematic	
	0.1	and Nonsystematic Effects	71
4	A Pı	rototype Exercise: Modified Dispersion Relations	
-	4.1	Modified Dispersion Relations	
	1.1	in Canonical Noncommutative Spacetime	72
	4.2	Modified Dispersion Relations	
	7.2	in κ -Minkowski Noncommutative Spacetime	74
	4.3	Modified Dispersion Relation in Loop Quantum Gravity	75
	4.4	Some Issues Relevant for the Proposal of Test Theories	76
	4.5	A Test Theory for Pure Kinematics	79
	$\frac{4.5}{4.6}$	The Minimal AEMNS Test Theory	81
	$\frac{4.0}{4.7}$		82
		A Test Theory Based on Low-Energy Effective Field Theory The Minimal CRMP Test Theory.	86
	4.8	The Minimal GPMP Test Theory	
	4.9	Derivation of Limits from Analysis of Gamma-Ray Bursts	87
		Derivation of Limits from Analysis of UHE Cosmic Rays	89
		Derivation of Limits from Analysis of Photon Stability	92
	4.12	Derivation of Limits from Analysis	
		of Synchrotron Radiation	93
5	Sum	mary and Outlook	95
Re	ferenc	es	98
A c	tronl	nysical Bounds	
	-	ack Suppressed Lorentz Violation	
		son, S. Liberati, D. Mattingly	101
1	AAIU	dows on Quantum Gravity?	TOT

		Contents	XI
2	Lorentz Violation		102
_	2.1 The GZK Cut-Off		
	2.2 Possible LV Phenomena		
	2.3 A Brief History of Some LV Research		
3	Theoretical Framework for LV		
	3.1 Deformed Dispersion Relations		
	3.2 Effective Field Theory and LV		
	3.3 Naturalness of Small LV at Low Energy?		
4	Reaction Thresholds and LV		
5	Constraints		
•	5.1 Constraints on Renormalizable Terms		
	5.2 Summary of Constraints on LV in QED at $O(E/N)$		
	5.3 Constraints at $O(E/M)$ from UHE Cosmic Rays.		
	5.4 Constraints at $O(E^2/M^2)$?		
6	Conclusion		
-	ferences		
I CC	references		. 120
Int	troduction to Doubly Special Relativity		
J	Kowalski-Glikman		. 131
1	Introduction		
2	DSR from Quantum Gravity?		. 133
3	Doubly Special Relativity and the κ -Poincaré Algebra .		
	3.1 Space-Time of DSR		. 144
	3.2 From DSR Theory to DSR Theories		. 146
4	Physics with Doubly Special Relativity	. 	. 150
	4.1 Time-of-Flight Experiments and the Issue of Velo		
	4.2 Remarks on Multi-Particle Systems		. 153
5	Conclusion		. 156
Re	ferences		. 157
Tond	terferometry as a Universal Tool in Physics		
	Lämmerzahl	÷ ;	161
1	Introduction		
$\frac{1}{2}$	The Importance of Interferometry		
3	Atomic Interferometry		
J	3.1 The Beam Splitter		
	3.2 Interaction with the Gravitational Field		
	3.3 Rotation – The Sagnac Effect		
	3.4 Coupling to the Gravity Gradient		
	3.5 Tests of Relativistic Gravity		
	3.6 Tests of the Einstein Equivalence Principle		
4	Test of Anomalous Dispersion Relation		
4	4.1 Tests with Laser Interferometry		
	4.1 Tests with Laser Interferometry		
5	Test of Space-Time Fluctuations		
J	Test of Space-Time Fuctuations	. 	190

37 T T	~ , ,
XII	Contents

	$5.1 \\ 5.2$	Atom and Neutron Interferometry
Refe		es
		nary Cosmological Perturbations tum-Mechanical Origin
J. A	Martin	<i>i</i>
1	Intro	duction
2	The	Inflationary Universe
	2.1	Basic Equations
	2.2	The Inflationary Hypothesis
	2.3	Implementing the Inflationary Hypothesis
	2.4	Slow-roll Inflation
	2.5	Reheating
3	Cosn	nological Perturbations
	3.1	General Framework
	3.2	Equations of Motion
	3.3	The Sachs-Wolfe Effect
4	Quar	ntization of Cosmological Perturbations
	4.1	Quantization of a Free Scalar Field
	4.2	Quantization of Density Perturbations
	4.3	Quantization of Gravitational Waves
	4.4	The Power Spectra in the Slow-roll Approximation
5	Com	parison with Observations
6	The	Trans-Planckian Problem of Inflation
	6.1	Modified Dispersion Relations
	6.2	The Minimal Approach
Ref	erenc	es
CP	${f T}$ ${f V}_{f i}$	olation and Decoherence in Quantum Gravity
N.E	E. Ma	$vromatos \dots \dots$
1	Intro	duction and Summary
2	Theo	oretical Motivation for CPT Violation
	and :	Formalism
	2.1	The CPT Theorem and How It May Be Evaded
	2.2	\$ Matrix and Strong CPT Violation (CPTV)252
	2.3	CPT Symmetry without CPT Symmetry?
	2.4	Decoherence and Purity of States under Evolution
	2.5	More General Case: Dynamical Semi-Group Approach
		to Decoherence, and Evolution of Pure States to Mixed 257
	2.6	State Vector Reduction ("Wavefunction Collapse")
		in Lindblad Decoherence
	2.7	Non-Critical String Decoherence:
		a Link between Decoherent Quantum Mechanics and Gravity? . 261
	2.8	Cosmological CPTV?

		Contents	XIII
3	Pher	nomenology of CPT Violation	269
	3.1	Order of Magnitude Estimates of CPTV	
	3.2	Mnemonic Cubes for CPTV Phenomenology	
	3.3	Lorentz Violation and CPT:	
		The Standard Model Extension (SME)	270
	3.4	Direct SME Tests and Modified Dispersion Relations (MDR)	
	3.5	Neutrinos and SME	
	3.6	Lorentz Non-Invariance, MDR and ν -Oscillations	
	3.7	Lorentz Non Invariance, MDR and ν Spin-Flavor Conversion	
	3.8	ν -Flavour States and Modified Lorentz Invariance (MLI)	
	3.9	CPTV and Departure from Locality for Neutrinos	
		Four-Generation ν Models with CPTV	
		CPTV Through QG Decoherence: Neutral Mesons	
		EPR Entangled Neutral Meson States	201
	0.12	and Novel Decoherence-Induced CPT Violating Effects	202
	2 1.2	CPTV Decoherence and Ultra Cold Neutrons	
		CPTV Through QG Decoherence for Neutrinos:	250
	0.14	the Most Sensitive Probe to Date	208
4	Con	clusions	
		res	
Tte	erenc		014
		m Foam and Quantum Gravity Phenomenology	
<i>Y</i> .		Ng	
1		oduction	
2	Qua	ntum Fluctuations of Spacetime	
	2.1	Gedanken Experiment	323
	2.2	The Holographic Principle	326
	2.3	Quantum Gravity Models	
	2.4	Cumulative Effects of Spacetime Fluctuations	331
3	Cloc	ks, Computers, and Black Holes	
	3.1	Clocks	332
	3.2	Computers	333
	3.3	Black Holes	334
	3.4	Results for Arbitrary Dimensions	336
4	Ener	rgy-Momentum Uncertainties	337
5		cetime Foam Phenomenology	
	5.1	Phase Incoherence of Light from Extra-galactic Sources	
	5.2	High Energy γ Rays from Distant GRB	
	5.3	Interferometry Techniques	
	5.4	Ultra-High Energy Cosmic Ray Events	
6		mary and Conclusions	
		es	
	. OI OIIC		

XIV Contents

Ga	mma-Ray Bursts as Probes for Quantum Gravity	
	$Piran \dots 35$	1
1	Introduction	1
2	An Energy Dependent Speed of Light	51
3	On the Detection	
	of Energy Dependent Time Lags Due	
	to an Energy Dependent Speed of Light	52
4	Gamma-Ray Bursts35	
5	GRB Observations and Testing	
	of a Variable Speed of Light	6
6	Caveat, Past Observations and Future Prospects	58
Ref	erences	
Τ	on Oventum Cravity and Dlengt Scale Dhanamanalams	
	op Quantum Gravity and Planck Scale Phenomenology Smolin	१२
1	Introduction	
2	What Should Theory Predict for Phenomenology	
3	Does Loop Quantum Gravity Make Predictions	14
J	for Planck Scale Phenomenology?	٠ ي
4	The Basic Ideas of Loop Quantum Gravity	
5	Gravity as a Gauge Theory	
6	The de Sitter Solution as a Gauge Field	
7	Hamilton-Jacobi Theory, de Sitter Spacetime	U
•	and Chern-Simons Theory	77
8	General Relativity	- 4
O	as a Constrained Topological Field Theory	7 Q
9	Boundaries with $\Lambda > 0$ and Chern-Simons Theory	
10	The Kodama State	
10	10.1 A Brief Review of Quantization	
	10.2 The Kodama State	
11	The Thermal Nature)C
TT	of Quantum Gravity with $\Lambda > 0$	M
12	The Recovery of QFT on de Sitter Spacetime	
13	Gravitons from Perturbations Around	, _
19		٦.
1.4	the Kodama State	
14	Corrections to Energy Momentum Relations	
15	Conclusions and Further Developments	
ĸet	erences	J
Ind	lov M	ነር