

Table of Contents

Part I: One-dimensional, One-channel Systems

Chapter 1 The principal Equations of Scattering Theory	1
1.1 General Remarks	1
1.2 Elements of the Direct and Inverse Problems	2
1.2.1 The Simplest Difference Schrödinger Equation	2
1.2.2 Potential Wells of Infinite Depth	3
1.2.3 The Direct Problem	4
1.2.4 The Inverse Problem	6
1.2.5 Scattering by a Potential of Finite Range	7
1.2.6 The Finite-Difference Analogue of the R -matrix Scattering Theory	9
1.2.7 Conditions of Orthonormality and Completeness of the Eigenfunctions of the Finite-Difference Schrödinger Operator on $[0, \alpha]$	10
1.2.8 Relations Between the Scattering Parameters $\{E_\lambda \text{ and } \gamma_\lambda\}$	11
1.2.9 Reconstruction of the Potential on the Semi-axis $0 \leq x < \infty$	11
1.3 The Gelfand-Levitan-Marchenko Equations	12
1.3.1 The Regular Solutions φ and $\hat{\varphi}$	12
1.3.2 The Algebraic Analogue of the Gelfand-Levitan Equations	14
1.3.3 The Relationship Between $K(n, m)$ and the Potential $V(n)$	16
1.3.4 The Gelfand-Levitan Formalism ($\Delta \rightarrow dx$)	16
1.3.5 The R -matrix Inverse Problem	17
1.3.6 The Inverse Problem on the Semi-axis Within the Gelfand-Levitan Approach	18
1.3.7 The Algebraic Analogue of the Marchenko Method	19
1.3.8 The Marchenko Equations for $\Delta \rightarrow dx$	22
1.3.9 Relations Between $V(n)$ and $K(m, n)$ in the Marchenko Approach	23
1.4 Miscellaneous Direct and Inverse Problems	24
1.4.1 Stationary Solutions and Wave Propagation	25
1.4.2 Penetrability of Potential Barriers	29
1.4.3 The Inverse Problem on the Whole Axis	34
1.4.4 Reconstruction of Potentials from Resonance Parameters	41
1.5 Notes on the Literature	50
1.6 Exercises	53

Chapter 2 Exactly Solvable Models: Bargmann Potentials V^B	55
2.1 General Comments	55
2.2 Simplest Examples of V^B ($\sigma \leq \tau \infty$) for $l = 0$	56
2.2 Potentials with a Single Bound State	57
2.2.2 Potentials Without Bond States: $S(k)$ with a Single Pole in the Upper k Walf-plane	60
2.2.3 Potentials with $S(k)$ with Two Poles in the Upper k Half-Plane	61
2.3 More General Models	63
2.3 Multi-term Degenerate Kernels of the Inverseproblem Equations	65
2.3.2 Models of One-Dimensional Motion on the Whole Axis	69
2.3.3 The Finite-Difference-Approach	69
2.3.4 The Rational Reflection Coefficient (no Bound States)	70
2.3.5 The Finite-difference Approach	71
2.4 Potentials of the Finite-Range and Infinitely Deep Wells.	
R-matrix Models	72
2.5 Potentials Allowing Exact Solutions for Variable Angular Momenta	83
2.5.1 Potentials from Spectral Data at Fixed Energy and Variable l	83
2.5.2 Newton-Sabatier Potentials	84
2.5.3 The Generalized Crum-Krein Transformations	85
2.5.4 Lipperheide-Fidelday Potentials	88
2.6 Notes on the Literature	89
2.7 Exercises	91
Chapter 3 Approximate Solutions	92
3.1 Convergence of the Approximations, Stability and Regularization of Solutions	93
3.2 Solutions Using Bargmann Potentials	
3.4 Approximation of Datentials by Steps, at Discrete Points, and by Splines.	
The Role of the Upper Part of the Spectrum	109
3.5 Method of Multiple Solutions of the Direct Problem	121
3.6 Notes on the Literature	122
Chapter 4 The Levinson Theorem	125
4.1 General Remarks	125
4.2 Simple Examples	126
4.3 The Coulomb Potential and Other Singular Interactions	130
4.4 Other Types of Interactions	134
4.4.1 Potentials Depending on Velocity	134
4.4.2 Potentials Depending on Energy	134
4.4.3 The Finite-Difference Schrödinger Equation	135
4.4.4 Motion Along the Axis	135
4.4.5 Nonlocal Potentials	136
4.5 Notes on the Literature	137

Part II. Multi-channel, Multi-dimensional, Multi-particle Problems

Chapter 5 Multi-channel Equations	140
5.1 General Remarks	140
5.2 The Formalism of Multi-channel Coupling	140
5.3 Finite-Difference Equations of Motion	145
5.4 Exactly Solvable Models	149
5.5 Notes on the Literature	151
5.6 Exercises	152
Chapter 6 Multi-dimensional Problems	
6.1 General Remarks	153
6.2 The Finite-Difference Formalism	155
6.3 Reduction of Multi-dimensional problems to Multichannel problems	159
6.4 The Multi-dimensional Inverse Problem	167
6.5 Separation of Variables in Noncentral Field	168
6.6 Exactly Solvable Models	170
6.7 Notes on the Literature	176
Chapter 7 Multi-particle Systems	177
7.1 General Remarks	177
7.2 Asymptotic Hamiltonians and Boundary Conditions	178
7.3 Tunnelling Through Potential Barriers by Several Particles	182
7.4 Excitation of Collective Degrees of Freedom of Multi-particle Systems	188
7.4.1 Transformation of Amplitudes in Transition to the Reference Frame of the Target	
7.5 The Method of Hyperspherical Functions (K -harmonics)	191
7.6 The Levinson Theorem	196
7.7 Three-Particle Potentials	197
7.8 Notes on the Literature	202
References	210
Subject Index	221