Computer Speech

Recognition, Compression, Synthesis

Second Edition

With Introductions to Hearing and Signal Analysis and a Glossary of Speech and Computer Terms

With 90 Figures

Contents

1.	Introduction		
	1.1	Speech: Natural and Artificial	1
	1.2	Voice Coders	2
	1.3	Voiceprints for Combat and for Fighting Crime	4
	1.4	The Electronic Secretary	7
	1.5	The Human Voice as a Key	8
	1.6	Clipped Speech	9
	1.7	Frequency Division	11
	1.8	The First Circle of Hell: Speech in the Soviet Union	12
	1.9	Linking Fast Trains to the Telephone Network	13
	1.10	Digital Decapitation	14
	1.11	Man into Woman and Back	16
	1.12	Reading Aids for the Blind	16
	1.13	High-Speed Recorded Books	16
	1.14	Spectral Compression for the Hard-of-Hearing	17
	1.15	Restoration of Helium Speech	17
		Noise Suppression	17
	1.17	Slow Speed for Better Comprehension	19
	1.18	Multiband Hearing Aids and Binaural Speech Processors	19
		Improving Public Address Systems	20
	1.20	Raising Intelligibility in Reverberant Spaces	20
	1.21	Conclusion	21
2.	ΑВ	rief History of Speech	23
	2.1	Animal Talk	23
	2.2	Wolfgang Ritter von Kempelen	24
	2.3	From Kratzenstein to Helmholtz	26
	2.4	Helmholtz and Rayleigh	27
	2.5	The Bells:	
		Alexander Melville and Alexander Graham Bell	28
	2.6	Modern Times	29
	2.7	The Vocal Tract	30
	2.8	Articulatory Dynamics	31
	2.9	The Vocoder and Some of Its Progeny	34

XXX Contents

	2.10	Formant Vocoders	35
	2.11	Correlation Vocoders	36
	2.12	The Voice-Excited Vocoder	36
		Center Clipping for Spectrum Flattening	37
		Linear Prediction	38
		Subjective Error Criteria	38
		Neural Networks	39
		Wavelets	39
		Conclusion	40
	2.10	Conclusion	-10
3.	\mathbf{Spe}	ech Recognition	
	and	Speaker Identification	41
	3.1	Speech Recognition	42
	3.2	Dialogue Systems	44
	3.3	Speaker Identification	45
	3.4	Word Spotting	46
	3.5	Pinpointing Disasters by Speaker Identification	47
	3.6	Speaker Identification for Forensic Purposes	48
	3.7	Dynamic Programming	49
	3.8	Markov Models	49
	3.9	Shannon's Outguessing Machine	
	0.0	- A Markov Model Analyzer	50
	3.10	Hidden Markov Models in Speech Recognition	51
	0.10	3.10.1 The model and algorithms	52
	3 11	Neural Networks	55
	0.11	3.11.1 The Perceptron	56
		3.11.2 Multilayer Networks	56
		3.11.3 Backward Error Propagation	56
			57
		3.11.4 Kohonen Self-Organizing Maps	58
	9.10	3.11.5 Hopfield Nets and Associative Memory	
		Whole Word Recognition	59
		Robust Speech Recognition	59
	3.14	The Modulation Transfer Function	60
4.	Spe	ech Dialogue Systems	
	and	Natural Language Processing	67
	4.1	The Structure of Language	
		4.1.1 From Sound to Cognition:	
		Levels of Language Analysis and Knowledge	
		Representation	68
		4.1.2 Grammars	7]
		4.1.3 Symbolic Processing	73
		4.1.4 Statistical Processing	77
	4.2	Speech Dialogue Systems	86
	4.2		
		4.2.1 Demands of a Dialogue System	87

		4.2.2	Architecture and Components	89
		4.2.3	How to Wreck a Nice Beach	89
		4.2.4	Natural Language Processing	92
		4.2.5	Discourse Engine	95
		4.2.6	Response Generation	101
		4.2.7	Speech Synthesis	103
		4.2.8	Summary	105
5.	Spec	ech Co	ompression	107
	5.1	Vocod	ers	108
	5.2	Digita	l Simulation	109
	5.3		Prediction	
		5.3.1	Linear Prediction and Resonances	
		5.3.2	The Innovation Sequence	
		5.3.3	Single Pulse Excitation	
		5.3.4	Multipulse Excitation	
		5.3.5	Adaptive Predictive Coding	
		5.3.6	Masking of Quantizing Noise	119
		5.3.7	Instantaneous Quantizing Versus Block Coding	
		5.3.8	Delays	122
		5.3.9	Code Excited Linear Prediction (CELP)	123
		5.3.10	Algebraic Codes	123
		5.3.11	Efficient Coding of Parameters	124
	5.4	Wavefe	orm Coding	124
	5.5	Transf	Form Coding	125
	5.6	Audio	Compression	126
6.	Spe	ech Sv	nthesis	129
	6.1		-Based Speech Synthesis	
	6.2		esis by Concatenation	
	6.3		dy	
7.	Sne	ech Pr	oduction	135
• •	7.1		es and Filters	
	7.2		ocal Source	
	7.3		ocal Tract	
	1.0	7.3.1	Radiation from the Lips	
	7.4		coustic Tube Model of the Vocal Tract	
	7.5		te Time Description	
8.			ch Signal	
	8.1	•	L	150
	8.2		ced Sounds	
	8.3		oiced-Unvoiced Classification	
	8.4	The Fe	ormant Frequencies	151

XXXII Contents

9.	Hearing	. 153
	9.1 Historical Antecedents	. 155
	9.2 Thomas Seebeck and Georg Simon Ohm	. 157
	9.3 More on Monaural Phase Sensitivity	. 157
	9.4 Hermann von Helmholtz and Georg von Békésy	
	9.4.1 Thresholds of Hearing	. 158
	9.4.2 Pulsation Threshold and Continuity Effect	. 159
	9.5 Anatomy and Basic Capabilities of the Ear	
	9.6 The Pinnae and the Outer Ear Canal	. 160
	9.7 The Middle Ear	. 160
	9.8 The Inner Ear	
	9.9 Mechanical to Neural Transduction	
	9.10 Some Astounding Monaural Phase Effects	
	9.11 Masking	
	9.12 Loudness	
	9.13 Scaling in Psychology	
	9.14 Pitch Perception and Uncertainty	. 177
10.	Binaural Hearing - Listening with Both Ears	. 179
	10.1 Directional Hearing	. 179
	10.2 Precedence and Haas Effects	
	10.3 Vertical Localization	. 183
	10.4 Virtual Sound Sources and Quasi-Stereophony	. 185
	10.5 Binaural Release from Masking	. 188
	10.6 Binaural Beats and Pitch	. 189
	10.7 Direction and Pitch Confused	. 190
	10.8 Pseudo-Stereophony	. 194
	10.9 Virtual Sound Images	. 196
	10.10 Philharmonic Hall, New York	
	10.11 The Proper Reproduction of Spatial Sound Fields	
	10.12 The Importance of Lateral Sound	
	10.13 How to Increase Lateral Sounds in Real Halls	
	10.14 Summary	. 205
11.	Basic Signal Concepts	. 207
	11.1 The Sampling Theorem and Some Notational Conventions	
	11.2 Fourier Transforms	
	11.3 The Autocorrelation Function	
	11.4 The Convolution Integral and the Delta Function	
	11.5 The Cross-Correlation Function and the Cross-Spectrum	
	11.5.1 A Bit of Number Theory	
	11.6 The Hilbert Transform and the Analytic Signal	
	11.7 Hilbert Envelope and Instantaneous Frequency	
	11.8 Causality and the Kramers-Kronig Relations	
	11.8.1 Anticausal Functions	

		11.8.2 Minimum-Phase Systems and Complex Frequencies	226
		11.8.3 Allpass Systems	227
		11.8.4 Dereverberation	228
	11.9	Matched Filtering	229
	11.10	Phase and Group Delay	230
	11.11	Heisenberg Uncertainty and The Fourier Transform	232
		11.11.1 Prolate Spheroidal Wave Functions and Uncertainty .	234
	11.12	2 Time and Frequency Windows	238
	11.13	B The Wigner-Ville Distribution	239
	11.14	The Cepstrum: Measurement of Fundamental Frequency	241
	11.15	5 Line Spectral Frequencies	244
Α.	Aco	ustic Theory and Modeling of the Vocal Tract	247
		Introduction	
	A.2	Acoustics of a Hard-Walled, Lossless Tube	248
		A.2.1 Field Equations	
		A.2.2 Time-Invariant Case	
		A.2.3 Formants as Eigenvalues	
		A.2.4 Losses and Nonrigid Walls	
	A.3	Discrete Modeling of a Tube	
		A.3.1 Time-Domáin Modeling	
		A.3.2 Frequency Domain Modeling, Two-Port Theory	
		A.3.3 Tube Models and Linear Prediction	
	A.4	Notes on the Inverse Problem	
		A.4.1 Analytic and Numerical Methods	
		A.4.2 Empirical Methods	
В.	Dire	ct Relations	
		ween Cepstrum and Predictor Coefficients	269
	B.1	Derivation of the Main Result	
	B.2	Direct Computation of Predictor Coefficients	
		from the Cepstrum	271
	B.3	A Simple Check	
	B.4	Connection with Algebraic Roots and Symmetric Functions	
	B.5	Connection with Statistical Moments and Cumulants	
	B.6	Computational Complexity	
	B.7	An Application of Root-Power Sums to Pitch Detection	
Re	feren	ces	279
Ge	neral	Reading	297
		S	
		Journals	
A	Samp	ling of Societies and Major Meetings	308

XXXIV Contents

Glossary of Speech and Computer Terms	309
Name Index	339
Subject Index	349
The Author	377