Waves Called Solitons

Concepts and Experiments

3rd Revised and Enlarged Edition With 170 Figures

Contents

1	Basic	Concep	ts and the Discovery of Solitons	1		
	1.1	A look a	t linear and nonlinear signatures	1		
	1.2	Discover	ry of the solitary wave	3		
	1.3	Discover	ry of the soliton	7		
	1.4	The solit	ton concept in physics	11		
2	Linear Waves in Electrical Transmission Lines					
	2.1	Linear nondispersive waves				
	2.2	Sinusoid	al-wave characteristics	15		
		2.2.1	Wave energy density and power	18		
	2.3	The grou	np-velocity concept	19		
	2.4	Linear d	ispersive waves	21		
		2.4.1	Dispersive transmission lines	21		
		2.4.2	Electrical network	23		
		2.4.3	The weakly dispersive limit	26		
	2.5	Evolutio	on of a wavepacket envelope	27		
	2.6	Dispersion-induced wavepacket broadening				
	Appe	ndix 2A.	General solution for the envelope evolution	34		
	Appendix 2B.		Evolution of the envelope of a Gaussian wavepacket	35		
3	Solite	ons in	Nonlinear Transmission Lines	37		
	3.1	Nonline	ar and dispersionless transmission lines	37		
	3.2	Combined effects of dispersion and nonlinearity		41		
	3.3	Electrical solitary waves and pulse solitons		42		
	3.4		ory experiments on pulse solitons	46		
		3.4.1	Experimental arrangement	46		
		3.4.2	Series of experiments	48		
	3.5	Experim	nents with a pocket version of the electrical network	52		

	3.6	Nonlinea	r transmission lines in the microwave range	56
	Apper	ndix 3A.	Calculation of the effect of nonlinearity	
			on wave propagation	58
	Apper	ndix 3B.	Derivation of the solitary-wave solution	60
	Apper	ndix 3C.	Derivation of the KdV equation and its soliton solution	62
	Apper	ndix 3D.	Details of the electronics:	
			switch driver and pulse generator	64
4	More	on Tra	nsmission-Line Solitons	65
	4.1	Lattice s	solitons in the electrical Toda network	65
		4.1.1	Lattice solitons	67
	4.2	Experim	ents on lattice solitons	68
		4.2.1	Collisions of two lattice solitons	
			moving in opposite directions	70
		4.2.2	The Fermi-Pasta-Ulam recurrence phenomenon	70
	4.3	Periodic	wavetrains in transmission lines	71
		4.3.1	The solitary wave limit and sinusoidal limit	
			of the cnoidal wave	72
	4.4	Modulat	ed waves and the nonlinear dispersion relation	72
	4.5	Envelop	e and hole solitons	74
		4.5.1	Experiments on envelope and hole solitons	76
	4.6	Modula	tional instability	77
	4.7	Laborato	ory experiments on modulational instability	82
		4.7.1	Model equations	82
		4.7.2	Experiments	84
	4.8	Modulat	ional instability of two coupled waves	86
	4.9	Microwa	ave solitons in magnetic transmission lines	88
		4.9.1	Nonlinear spin waves	88
		4.9.2	NLS model equation for spin waves	88
		4.9.3	Observation of magnetic envelope solitons	89
	4.10	Solitons	s and signal processing	91
	Apper	ndix 4A.	Periodic wavetrain solutions	93
	Appe	ndix 4B.	The Jacobi elliptic functions	95
			Asymptotic limits	96
		4B.2	Derivatives and integrals	98
	Anner	ndix 4C	Envelope and hole soliton solutions	98

5	Hydr	odynami	c Solitons	103
	5.1	Equation	ns for surface water waves	103
		5.1.1	Reduced fluid equations	104
	5.2	Small-ar	mplitude surface gravity waves	100
	5.3	Linear sh	nallow- and deep-water waves	108
		5.3.1	Shallow-water waves	108
		5.3.2	Deep-water waves	109
	5.4	Surface-	tension effects: capillary waves	110
	5.5	Solitons	in shallow water	112
	5.6	Experim	ents on solitons in shallow water	115
		5.6.1	Experimental arrangement	116
		5.6.2	Experiments	116
	5.7	Stokes w	vaves and soliton wavepackets in deep water	120
		5.7.1	Stokes waves	120
		5.7.2	Soliton wavepackets	121
		5.7.3	Experiments on solitons in deep water	122
	5.8	Experim	ents on modulational instability in deep water	123
	5.9	Some a	pplications of the KdV model	126
		5.9.1	Blood pressure wave propagation	126
		5.9.2	Nonlinear modes of liquid drops	127
	Appendix 5A.		Basic equations of fluid mechanics	127
		5A.1	Conservation of mass	127
		5A.2	Conservation of momentum	129
		5A.3	Conservation of entropy	130
	Appendix 5B.		Basic definitions and approximations	130
		5B.1	Streamline	130
		5B.2	Irrotational and incompressible flow	131
		5B.3	Two-dimensional flow: the stream function	132
		5B.4	Boundary conditions	134
		5B.5	Surface tension	135
	Apper	ndix 5C.	Derivation of the KdV equation:	
			the perturbative approach	136
	Apper	ndix 5D.	Derivation of the nonlinear dispersion relation	139
	Anner	div 5F	Details of the probes and the electronics	140

6	Mech	nanical S	olitons	143
	6.1	An exper	imental mechanical transmisssion line	143
		6.1.1	General description of the line	143
		6.1.2	Construction of the line	145
	6.2	Mechanie	cal kink solitons	145
		6.2.1	Linear waves in the low-amplitude limit	146
		6.2.2	Large amplitude waves: kink solitons	147
		6.2.3	Lorentz contraction of the kink solitons	149
	6.3	Particle	properties of the kink solitons	151
	6.4	Kink-ki	nk and kink-antikink collisions	152
	6.5	Breather	solitons	154
	6.6	Experime	ents on kinks and breathers	156
	6.7		vaves, or kink array	157
	6.8	Dissipati	ve effects	159
	6.9	Envelope	e solitons	161
	6.10	Lattice	effects	163
		6.10.1	Pocket version of the pendulum chain, lattice effects	163
		6.10.2	Pendulum chain with weak coupling	164
	6.11	A mecha	nnical tranmsission line with two equilibrium states	165
		6.11.1	Periodic and double-well substrate potentials	165
		6.11.2	General description of the mechanical chain	166
		6.11.3	Kink-soliton solutions	169
		6.11.4	Compacton-like kinks or compactons	. 170
		6.11.5	Experiments	173
	6.12	Solitons	, compactons and nanopterons	. 175
	Appe	ndix 6A.	Kink-soliton and antikink-soliton solutions	178
	Appe	ndix 6B.	Calculation of the energy	
			and the mass of a kink soliton	179
	Appe	ndix 6C.	Solutions for kink-kink and	
			kink-antikink collisions, and breathers	180
		6C.1	Kink solutions	182
		6C.2	Kink-kink collisions	182
		6C.3	Breather solitons	183
		6C.4	Kink–antikink collision	184
	Appe	ndix 6D.	Solutions for helical waves	185
		ndix 6E.	Pendulum with torsion and gravity	187

	Appe	ndix 6F	Model equation for the pendulum chain	187		
7	Flux	ons in J	osephson Transmission Lines	189		
	7.1	The Jose	ephson effect in a short junction	189		
		7.1.1	The small Josephson junction	190		
	7.2	The lon	g Josephson junction as a transmission line	192		
	7.3	Dissipat	ive effects	196		
	7.4	Experin	nental observations of fluxons	198		
		7.4.1	Indirect observation	198		
		7.4.2	Direct observation	199		
		7.4.3	Lattice effects	201		
	Appe	endix 7A.	Josephson equations	201		
8	Solitons in Optical Fibers					
	8.1	Optical-	fiber characteristics	203		
		8.1.1	Linear dispersive effects	204		
		8.1.2	Nonlinear effects	206		
		8.1.3	Effect of losses	207		
	8.2	Wave-e	nvelope propagation	208		
	8.3	Bright a	and dark solitons	210		
		8.3.1	Bright solitons	211		
		8.3.2	Dark solitons	213		
	8.4	Experin	nents on optical solitons	214		
	8.5	8.5 Perturbations and soliton communications		216		
		8.5.1	Effect of losses	216		
		8.5.2	Soliton communications	217		
	8.6	Modula	tional instability of coupled waves	218		
	8.7	A look	at quantum-optical solitons	219		
	8.8	Some other kinds of optical solitons: spatial solitons				
	Appe	endix 8A.	Electromagnetic equations in a nonlinear medium	222		
9	The Soliton Concept in Lattice Dynamics					
	9.1		e-dimensional lattice in the continuum approximation			
	9.2		asi-continuum approximation for the monatomic lattice			
	9.3	_	da lattice			
	9.4		ne solitons and localized modes	233		

	9.5	The one-dimensional lattice with transverse nonlinear modes	235		
	9.6	Motion of dislocations in a one-dimensional crystal	238		
	9.7	The one-dimensional lattice model			
		for structural phase transitions	239		
		9.7.1 The order–disorder transition	241		
		9.7.2 The displacive transition	242		
	9.8	Kink-soliton solutions for generalized on-site potentials	244		
	9.9	A lattice model with an exact kink-soliton solution	247		
	9.10	Energy localization in nonlinear lattices.	250		
		9.10.1 Self-trapped states: polaron and conformon	250		
		9.10.2 Intrinsic localized modes or discrete breathers	251		
	9.11	Observation of discrete breathers	253		
		9.11.1 Discrete pendulum chains	253		
		9.11.2 Mechanical chain with torsion and gravity	254		
		9.11.3 A chain of magnetic pendulums	256		
	Apper	ndix 9A. Solutions for transverse displacements	257		
	Apper	ndix 9B. Kink-soliton or domain-wall solutions	259		
	Apper	ndix 9C Construction of a double-well potential	260		
10	A Lo	ok at Some Remarkable Mathematical Techniques	262		
	10.1	Lax equations and the inverse scattering transform method	262		
		10.1.1 The Fourier-transform method for linear equations	263		
		10.1.2 The Lax pair for nonlinear evolution equations	264		
	10.2	The KdV equation and the spectral problem	266		
	10.3	Time evolution of the scattering data	267		
		10.3.1 Discrete eigenvalues	267		
		10.3.2 Continuous spectrum	269		
	10.4	The inverse scattering problem	270		
		10.4.1 Discrete spectrum only: soliton solution	271		
	10.5	Response of the KdV model to an initial disturbance	273		
		10.5.1 The delta function potential	273		
		10.5.2 The rectangular potential well	274		
		10.5.3 The sech-squared potential well	274		
	10.6	The inverse scattering transform for the NLS equation	275		
	10.7	The Hirota method for the KdV equation	277		
	10.8	The Hirota method for the NLS equation			

H	Diffu	isive so	litons	284
	11.1	Combine	ed effects of dissipation and nonlinearity	285
		11.1.1	A diffusive electrical transmission line	285
		11.1.2	Linear diffusive waves	287
		11.1.3	Kink-shaped diffusive solitons	288
		11.1.4	Experiments on electrical diffusive solitons	290
	11.2	Reaction	diffusion processes	291
		11.2.1	Reaction diffusion equations	291
		11.2.2	A chemical model with reaction diffusion	293
		11.2.3	An electrical lattice with reaction diffusion	296
		11.2.4	Experiments with an electrical lattice	298
	11.3	A mecha	nical analog with diffusive solitons	299
		11.3.1	Chain with flexion and gravity	299
		11.3.2	Experimental chain	300
	11.4	Reaction	diffusion processes in lattices	301
		11.4.1	Propagation failure	301
		11.4.2	Discrete reaction diffusion model with exact solution	302
	Apper	ndix 11A.	Derivation of the Burgers equation	303
	Apper	ndix 11B.	Solution of the reaction diffusion equation	304
	Appe	ndix 11C.	Equation of motion of an Euler strut	305
Ref	erence	s		307
Subject Index				