J. L. Doob

Classical Potential Theory and Its Probabilistic Counterpart

Springer-Verlag
New York Berlin Heidelberg Tokyo

Contents

Intr	oduction	xxi
Not	ation and Conventions	xxv
Par	t 1	
Cla	ssical and Parabolic Potential Theory	
	,	
Cha	pter I	
	oduction to the Mathematical Background of Classical Potential	
	ory	3
1.	The Context of Green's Identity	3
2.	Function Averages	4
3.	Harmonic Functions	4
4.	Maximum-Minimum Theorem for Harmonic Functions	5
5.	The Fundamental Kernel for \mathbb{R}^{N} and Its Potentials	6
6.	Gauss Integral Theorem	7
7.	The Smoothness of Potentials; The Poisson Equation	8
8.	Harmonic Measure and the Riesz Decomposition	11
Cha	pter II	
Bas	ic Properties of Harmonic, Subharmonic, and Superharmonic	
	octions	14
1.	The Green Function of a Ball; The Poisson Integral	14
2.	Harnack's Inequality	16
3.	Convergence of Directed Sets of Harmonic Functions	17
4.	Harmonic, Subharmonic, and Superharmonic Functions	18
5.	Minimum Theorem for Superharmonic Functions	20
6.	Application of the Operation τ_B	20
7.	Characterization of Superharmonic Functions in Terms of Harmonic	
	Functions	22
8.	Differentiable Superharmonic Functions	23
9.	Application of Jensen's Inequality	23
10.	Superharmonic Functions on an Annulus	24
11.	Examples	25
12.	The Kelvin Transformation $(N \ge 2)$	26

vi Contents

13.	Greenian Sets	27
14.	The $L^1(\mu_{B-})$ and $D(\mu_{B-})$ Classes of Harmonic Functions on a Ball B ; The Riesz-Herglotz Theorem	27
15.	The Fatou Boundary Limit Theorem	31
16.	Minimal Harmonic Functions	33
	pter III	
Infi	ma of Families of Superharmonic Functions	35
1.	Least Superharmonic Majorant (LM) and Greatest Subharmonic	
	Minorant (GM)	35
2.	Generalization of Theorem 1	36
3.	Fundamental Convergence Theorem (Preliminary Version)	37
4.	The Reduction Operation	38
5.	Reduction Properties	41
6.	A Smallness Property of Reductions on Compact Sets	42
7.	The Natural (Pointwise) Order Decomposition for Positive Superharmonic	
	Functions	43
	pter IV	
Pot	entials on Special Open Sets	45
1.	Special Open Sets, and Potentials on Them	45
2.	Examples	47
3.	A Fundamental Smallness Property of Potentials	48
4.	Increasing Sequences of Potentials	49
5.	Smoothing of a Potential	49
6.	Uniqueness of the Measure Determining a Potential	50
7.	Riesz Measure Associated with a Superharmonic Function	51
8.	Riesz Decomposition Theorem	52
9.	Counterpart for Superharmonic Functions on \mathbb{R}^2 of the Riesz	
	Decomposition	53
10.	An Approximation Theorem	55
	pter V	
Pol	ar Sets and Their Applications	57
1.	Definition	57
2.	Superharmonic Functions Associated with a Polar Set	58
3.	Countable Unions of Polar Sets	59
4.	Properties of Polar Sets	59
5.	Extension of a Superharmonic Function	60
6.	Greenian Sets in \mathbb{R}^2 as the Complements of Nonpolar Sets	63
7.	Superharmonic Function Minimum Theorem (Extension of	
	Theorem II.5)	63
8.	Evans-Vasilesco Theorem	64
9.	Approximation of a Potential by Continuous Potentials	66
10.	The Domination Principle	67
11.	The Infinity Set of a Potential and the Riesz Measure	68

Contents vii

Chaj	pter VI	
The	Fundamental Convergence Theorem and the Reduction	
Ope	eration	70
1.	The Fundamental Convergence Theorem	70
2.	Inner Polar versus Polar Sets	71
3.	Properties of the Reduction Operation	74
4.	Proofs of the Reduction Properties	77
5.	Reductions and Capacities	84
Char	pter VII	
	en Functions	85
1.		85
1. 2.	Definition of the Green Function G_D	87
2. 3.	Extremal Property of G_D	88
3. 4.		90
4. 5.	Further Properties of G_D	92
	The Potential $G_D\mu$ of a Measure μ	92
6.		94
7.	Sequences	94
7. 8.	-	95
	From Special to Greenian Sets	95
9.	Approximation Lemma	95
10.	The Function $G_D(\cdot,\zeta)_{ D-\zeta }$ as a Minimal Harmonic Function	90
The	Property VIII Dirichlet Problem for Relative Harmonic Functions	98 98
2.	The PWB Method	99
3.	Examples	104
4.	Continuous Boundary Functions on the Euclidean Boundary $(h \equiv 1) \dots$	106
5.	h-Harmonic Measure Null Sets	108
6. 7.	Properties of PWB ^h Solutions	110
7. 8.	h-Harmonic Measure	111 114
8. 9.	h-Resolutive Boundaries	114
9. 10.	Relations between Reductions and Dirichlet Solutions	122
10.	Generalization of the Operator τ_B^h and Application to GM^h	122
12.	Barriers	123
13.	h-Barriers and Boundary Point h-Regularity	124
13.	Barriers and Euclidean Boundary Point Regularity	120
	The Geometrical Significance of Regularity (Euclidean Boundary, $h \equiv 1$).	
15.		128 130
16.	Continuation of Section 13	
17.		131
18.	The Extension G_D^{\pm} of G_D and the Harmonic Average $\mu_D(\xi, G_B^{\pm}(\eta, \cdot))$ When	122
19.	$D \subset B$	132
19. 20.	Interpretation of ϕ_D as a Green Function with Pole ∞ $(N=2)$	136 139
20.	Variant of the Operator σ	139

viii Contents

Cha	pter IX	
	tices and Related Classes of Functions	141
1.	Introduction	141
2.	$LM_D^h u$ for an h-Subharmonic Function u	141
3.	The Class $\mathbf{D}(\mu_{D^-}^h)$	142
4.	The Class $\mathbf{L}^p(\mu_{D-}^h)$ $(p \ge 1) \dots $	144
5.	The Lattices (S^{\pm}, \leq) and (S^{+}, \leq)	145
6.	The Vector Lattice (S, \leq)	146
7.	The Vector Lattice S_m	148
8.	The Vector Lattice S _p	149
9.	The Vector Lattice S_{qb}	150
10.	The Vector Lattice S _s	151
11.	A Refinement of the Riesz Decomposition	152
12.	Lattices of h-Harmonic Functions on a Ball	152
Cha	upter X	
	Sweeping Operation	155
1.	Sweeping Context and Terminology	155
2.	Relation between Harmonic Measure and the Sweeping Kernel	157
3.	Sweeping Symmetry Theorem	158
4.	Kernel Property of δ_D^A	158
5.	Swept Measures and Functions	160
6.	Some Properties of δ_D^A	161
7.	Poles of a Positive Harmonic Function	163
8.	Relative Harmonic Measure on a Polar Set	164
Cha	pter XI	
	E Fine Topology	166
1.	Definitions and Basic Properties	166
2.	A Thinness Criterion	168
3.	Conditions That $\xi \in A^f$	169
4.	An Internal Limit Theorem	171
5.	Extension of the Fine Topology to $\mathbb{R}^N \cup \{\infty\}$.	175
6.	The Fine Topology Derived Set of a Subset of \mathbb{R}^N	177
7.	Application to the Fundamental Convergence Theorem and to Reductions.	177
8.	Fine Topology Limits and Euclidean Topology Limits	178
9.	Fine Topology Limits and Euclidean Topology Limits (Continued)	179
10.	Identification of A^f in Terms of a Special Function u^*	180
11.	Quasi-Lindelöf Property	180
12.	Regularity in Terms of the Fine Topology	181
13.	The Euclidean Boundary Set of Thinness of a Greenian Set	182
14.	The Support of a Swept Measure	183
15.	Characterization of $\ \mu\ ^A$	183
16.	A Special Reduction	184
17.	The Fine Interior of a Set of Constancy of a Superharmonic Function	184
18.	The Support of a Swept Measure (Continuation of Section 14)	185
19.	Superharmonic Functions on Fine-Open Sets	187
20	A Commeliand Reduction	107

Contents ix

21.	Limits of Superharmonic Functions at Irregular Boundary Points of Their	100
22	Domains	190
22. 23.	The Limit Harmonic Measure ${}^f\mu_D$ Extension of the Domination Principle	191 194
Cha	apter XII	
The	Martin Boundary	195
1.	Motivation	195
2.	The Martin Functions	196
3.	The Martin Space	197
4.	Preliminary Representations of Positive Harmonic Functions and Their Reductions	199
5.	Minimal Harmonic Functions and Their Poles	200
6.	Extension of Lemma 4	201
7.	The Set of Nonminimal Martin Boundary Points	202
8.	Reductions on the Set of Minimal Martin Boundary Points	203
9.	The Martin Representation	204
10.	Resolutivity of the Martin Boundary	207
11.	Minimal Thinness at a Martin Boundary Point	208
12.	The Minimal-Fine Topology	210
13.	First Martin Boundary Counterpart of Theorem XI.4(c) and (d)	213
14.	Second Martin Boundary Counterpart of Theorem XI.4(c)	213
15.	Minimal-Fine Topology Limits and Martin Topology Limits at a Minimal Martin Boundary Point	215
16.	Minimal-Fine Topology Limits and Martin Topology Limits at a Minimal	
	Martin Boundary Point (Continued)	216
17.	Minimal-Fine Martin Boundary Limit Functions	216
18.	The Fine Boundary Function of a Potential	218
19.	The Fatou Boundary Limit Theorem for the Martin Space	219
20.	Classical versus Minimal-Fine Topology Boundary Limit Theorems for Relative Superharmonic Functions on a Ball in \mathbb{R}^N	221
21.	Nontangential and Minimal-Fine Limits at a Half-space Boundary	222
22.	Normal Boundary Limits for a Half-space	223
23.	Boundary Limit Function (Minimal-Fine and Normal) of a Potential on a	LLJ
- /.	Half-space	225
Cha	apter XIII	
Cla	ssical Energy and Capacity	226
1.	Physical Context	226
2.	Measures and Their Energies	227
3.	Charges and Their Energies	228
4.	Inequalities between Potentials, and the Corresponding Energy	
	Inequalities	229
5.	The Function $D \mapsto G_D \mu$	230
6.	Classical Evaluation of Energy; Hilbert Space Methods	231
7.	The Energy Functional (Relative to an Arbitrary Greenian Subset D of	
Q	R ^N)	233

X Contents

9.	Sharpening of Lemma 4	237
10.		237
11.		240
12.	Extremal Property Characterizations of Equilibrium Potentials (Notation	
	of Section 10)	241
13.	Expressions for $C(A)$	243
14.		244
15.	Dependence of C^* on D	247
16.		248
17.		249
18.	The Robin Constant and Equilibrium Measures Relative to \mathbb{R}^2 $(N=2)$	251
	pter XIV	
	,	256
1.		256
2.	· •	256
3.		256
4.		257
5.	• • • • • • • • • • • • • • • • • • • •	257
6.		258
7.		259
8.	3	259
9.		260
10.	The Martin Boundary	261
	pter XV	
Par	•	262
1.		262
2.	The Parabolic and Coparabolic Operators	263
3.		264
4.	The Parabolic Green Function of \mathbb{R}^N	266
5.	Maximum-Minimum Parabolic Function Theorem	267
6.		269
7.	The Parabolic Green Function of a Smooth Domain; The Riesz Decom-	
	1	270
8.		272
9.		273
10.		275
11.		276
12.		277
13.	r r	279
14.	The Operation $\dot{\tau}_{\dot{B}}$ and the Defining Average Properties of Superparabolic	
		280
15.	1 1 · · · · · · · · · · · · · · · · · ·	281
16.		282
17.	Extensions of a Parabolic Function Defined on a Cylinder	283

Contents xi

Cha	apter XVI	
Sut	oparabolic, Superparabolic, and Parabolic Functions on a Slab	285
1.	The Parabolic Poisson Integral for a Slab	285
2.	A Generalized Superparabolic Function Inequality	287
3.	A Criterion of a Subparabolic Function Supremum	288
4.	A Boundary Limit Criterion for the Identically Vanishing of a Positive	
	Parabolic Function	288
5.	A Condition that a Positive Parabolic Function Be Representable by a	
	Poisson Integral	290
6.	The $L^1(\dot{\mu}_{\dot{B}})$ and $D(\dot{\mu}_{\dot{B}})$ Classes of Parabolic Functions on a Slab	290
7.	The Parabolic Boundary Limit Theorem	292
8.	Minimal Parabolic Functions on a Slab	293
Cha	apter XVII	
Par	rabolic Potential Theory (Continued)	295
1.	Greatest Minorants and Least Majorants	295
2.	The Parabolic Fundamental Convergence Theorem (Preliminary Version)	
	and the Reduction Operation	295
3.	The Parabolic Context Reduction Operations	296
4.	The Parabolic Green Function	298
5.	Potentials	300
6.	The Smoothness of Potentials	303
7.	Riesz Decomposition Theorem	305
8.	Parabolic-Polar Sets	305
9.	The Parabolic-Fine Topology	308
10.	Semipolar Sets	309
11.	Preliminary List of Reduction Properties	310
12.	A Criterion of Parabolic Thinness	313
13.	The Parabolic Fundamental Convergence Theorem	314
14.	Applications of the Fundamental Convergence Theorem to Reductions	
	and to Green Functions	316
15.	Applications of the Fundamental Convergence Theorem to the Parabolic-	
	Fine Topology	317
16.	Parabolic-Reduction Properties	317
17.	Proofs of the Reduction Properties in Section 16	320
18.	The Classical Context Green Function in Terms of the Parabolic Context	
	Green Function $(N \ge 1)$	326
19.	The Quasi-Lindelöf Property	328
Cha	apter XVIII	
The	e Parabolic Dirichlet Problem, Sweeping, and Exceptional Sets	329
1.	Relativization of the Parabolic Context; The PWB Method in this	220
•	Context	329
2.	h-Parabolic Measure	332
3.	Parabolic Barriers	333
4.	Relations between the Classical Dirichlet Problem and the Parabolic Context Dirichlet Problem	334
5.		334
J.	Ciassical reductions in the falabolic Context	כככ

xii Contents

6.	Parabolic Regularity of Boundary Points	337
7.	Parabolic Regularity in Terms of the Fine Topology	341
8.	Sweeping in the Parabolic Context	341
9.	The Extension $\dot{G}_{\dot{D}}^{\bar{z}}$ of $\dot{G}_{\dot{D}}$ and the Parabolic Average $\dot{\mu}_{\dot{D}}(\dot{\xi}, \dot{G}_{\dot{B}}^{\bar{z}}(\cdot, \dot{\eta}))$ when	242
10	$\dot{D} \subset \dot{B}$	343
10.	Conditions that $\dot{\xi} \in \dot{A}^{pf}$	345 347
11.	Parabolic- and Coparabolic-Polar Sets	
12.	Parabolic- and Coparabolic-Semipolar Sets	348
13.	The Support of a Swept Measure	350
14.	An Internal Limit Theorem; The Coparabolic-Fine Topology Smoothness	251
1.5	of Superparabolic Functions	351
15.	Application to a Version of the Parabolic Context Fatou Boundary Limit	257
1.6	The Personal Contest Personal Principle	357
16.	The Parabolic Context Domination Principle	358
17.	Limits of Superparabolic Functions at Parabolic-Irregular Boundary	250
18.	Points of Their Domains	358 361
18. 19.	Lattices and Related Classes of Functions in the Parabolic Context	361
19.	Lattices and Related Classes of Functions in the Farabolic Context	301
Ch.	VIV	
	pter XIX	262
	Martin Boundary in the Parabolic Context	363
1.	Introduction	363
2.	The Martin Functions of Martin Point Set and Measure Set Pairs	364
3.	The Martin Space \dot{D}^{M}	366
4.	Preparatory Material for the Parabolic Context Martin Representation Theorem	367
5.	Minimal Parabolic Functions and Their Poles	369
6.	The Set of Nonminimal Martin Boundary Points	370
7.	The Martin Representation in the Parabolic Context	371
8.	Martin Boundary of a Slab $\dot{D} = \mathbb{R}^N \times]0, \delta[$ with $0 < \delta \le +\infty$	371
9.	Martin Boundaries for the Lower Half-space of \mathbb{R}^N and for \mathbb{R}^N	374
10.	The Martin Boundary of $\dot{D} =]0, +\infty[\times] -\infty, \delta[\ldots]$	375
11.	$\dot{P}WB^{h}$ Solutions on \dot{D}^{M}	377
12.	The Minimal-Fine Topology in the Parabolic Context	377
13.	Boundary Counterpart of Theorem XVIII.14(f)	379
14.	The Vanishing of Potentials on $\partial^M \dot{D}$	381
15.	The Parabolic Context Fatou Boundary Limit Theorem on Martin Spaces	381
13.	The Parabolic Context I alou boundary Limit Pheorem on Wartin Spaces	201
Da.	• 2	
Par		
Pro	babilistic Counterpart of Part 1	
Cha	pter I	
	•	207
	adamental Concepts of Probability	387
1.	Adapted Families of Functions on Measurable Spaces	387
2.	Progressive Measurability	388
3.	Random Variables	390

Contents	xiii
Contents	X1

4.	Conditional Expectations	391
5.	Conditional Expectation Continuity Theorem	393
6.	Fatou's Lemma for Conditional Expectations	396
7.	Dominated Convergence Theorem for Conditional Expectations	397
8.	Stochastic Processes, "Evanescent," "Indistinguishable," "Standard Modification," "Nearly"	398
9.	The Hitting of Sets and Progressive Measurability	401
10.	Canonical Processes and Finite-Dimensional Distributions	402
11.	Choice of the Basic Probability Space	404
12.	The Hitting of Sets by a Right Continuous Process	405
13.	Measurability versus Progressive Measurability of Stochastic Processes	407
14.	Predictable Families of Functions	410
	pter II	
Opt	tional Times and Associated Concepts	413
1.	The Context of Optional Times	413
2.	Optional Time Properties (Continuous Parameter Context)	415
3.	Process Functions at Optional Times	417
4.	Hitting and Entry Times	419
5.	Application to Continuity Properties of Sample Functions	421
6.	Continuation of Section 5	423
7.	Predictable Optional Times	423
8.	Section Theorems	425
9.	The Graph of a Predictable Time and the Entry Time of a Predictable	40.0
••	Set	426
10.	Semipolar Subsets of $\mathbb{R}^+ \times \Omega$	427
11.	The Classes D and L ^p of Stochastic Processes	428
12.	Decomposition of Optional Times; Accessible and Totally Inaccessible	429
	Optional Times	427
	pter III	420
	ments of Martingale Theory	432
1.	Definitions	432
2.	Examples	433
3.	Elementary Properties (Arbitrary Simply Ordered Parameter Set)	435
4.	The Parameter Set in Martingale Theory	437 437
5.	Convergence of Supermartingale Families	437
6. 7	Optional Sampling Theorem (Bounded Optional Times)	438
7. 8.		440
o. 9.	Optional Stopping	442
9. 10.	Maximal Inequalities	444
10.	Conditional Maximal Inequalities	444
11.	Crossings	445
13.	Forward Convergence in the L ¹ Bounded Case	450
14.	Convergence of a Uniformly Integrable Martingale	451
15.	Forward Convergence of a Right Closable Supermartingale	453
16.	Backward Convergence of a Martingale	454

xiv Contents

17.	Backward Convergence of a Supermartingale	455
18.	The τ Operator	455
19.	The Natural Order Decomposition Theorem for Supermartingales	457
20.	The Operators LM and GM	458
21.	Supermartingale Potentials and the Riesz Decomposition	459
22.	Potential Theory Reductions in a Discrete Parameter Probability	
	Context	459
23.	Application to the Crossing Inequalities	461
Cha	upter IV	
	sic Properties of Continuous Parameter Supermartingales	463
1.	Continuity Properties	463
2.	Optional Sampling of Uniformly Integrable Continuous Parameter	40.
۷.	Martingales	468
3.	Optional Sampling and Convergence of Continuous Parameter	700
٥.	Supermartingales	470
4.	Increasing Sequences of Supermartingales	473
5.	Probability Version of the Fundamental Convergence Theorem of Potential	7/-
٥.	Theory	476
6.	Quasi-Bounded Positive Supermartingales; Generation of Supermartingale	7,0
٥.	Potentials by Increasing Processes	480
7.	Natural versus Predictable Increasing Processes $(I = \mathbb{Z}^+ \text{ or } \mathbb{R}^+)$	483
8.	Generation of Supermartingale Potentials by Increasing Processes in the	,0-
v.	Discrete Parameter Case	488
9.	An Inequality for Predictable Increasing Processes	489
10.	Generation of Supermartingale Potentials by Increasing Processes for	
	Arbitrary Parameter Sets	490
11.	Generation of Supermartingale Potentials by Increasing Processes in the	
	Continuous Parameter Case: The Meyer Decomposition	493
12.	Meyer Decomposition of a Submartingale	495
13.	Role of the Measure Associated with a Supermartingale;	
	The Supermartingale Domination Principle	496
14.	The Operators τ , LM, and GM in the Continuous Parameter Context	500
15.	Potential Theory on $\mathbb{R}^+ \times \Omega$	501
16.	The Fine Topology of $\mathbb{R}^+ \times \Omega$	502
17.	Potential Theory Reductions in a Continuous Parameter Probability	
	Context	504
18.	Reduction Properties	505
19.	Proofs of the Reduction Properties in Section 18	509
20.	Evaluation of Reductions	513
21.	The Energy of a Supermartingale Potential	515
22.	The Subtraction of a Supermartingale Discontinuity	516
23.	Supermartingale Decompositions and Discontinuities	518
Cha	apter V	
	tices and Related Classes of Stochastic Processes	520
1.	Conventions; The Essential Order	520 521
2.	LIVI X(') WHEH {X('), F (')} is a Submartingaic	321

Contents XV

3.	Uniformly Integrable Positive Submartingales	523
4.	L^p Bounded Stochastic Processes $(p \ge 1)$	524
5.	The Lattices $(S^{\pm}, \leq), (S^{\pm}, \leq), (S^{\pm}, \leq), (S^{\pm}, \leq)$	525
6.	The Vector Lattices ('S, \leq) and (S, \leq)	528
7.	The Vector Lattices (S_m, \leq) and (S_m, \leq)	529
8.	The Vector Lattices ((S_p, \leq)) and (S_p, \leq)	530
9.	The Vector Lattices ((\hat{S}_{qb}, \leq)) and (\hat{S}_{qb}, \leq)	531
10.	The Vector Lattices ((S_s, \leq)) and (S_s, \leq)	532
11.	The Orthogonal Decompositions $S_m = S_{mqb} + S_{ms}$ and $S_m = S_{mqb} + S_{ms}$.	533
12.	Local Martingales and Singular Supermartingale Potentials in (S, \leq)	534
13.	Quasimartingales (Continuous Parameter Context)	535
	pter VI	
Ma	rkov Processes	539
1.	The Markov Property	539
2.	Choice of Filtration	544
3.	Integral Parameter Markov Processes with Stationary Transition Probabilities	545
4.	Application of Martingale Theory to Discrete Parameter Markov	343
4.	Processes	547
5.	Continuous Parameter Markov Processes with Stationary Transition	
	Probabilities	550
6.	Specialization to Right Continuous Processes	552
7.	Continuous Parameter Markov Processes: Lifetimes and Trap Points	554
8.	Right Continuity of Markov Process Filtrations; A Zero-One (0-1) Law	556
9.	Strong Markov Property	557
10.	Probabilistic Potential Theory; Excessive Functions	560
11.	Excessive Functions and Supermartingales	564
12.	Excessive Functions and the Hitting Times of Analytic Sets (Notation and	
	Hypotheses of Section 11)	565
13.	Conditioned Markov Processes	566
14.	Tied Down Markov Processes	567
15.	Killed Markov Processes	568
~1		
	pter VII	
	ownian Motion	570
1.	Processes with Independent Increments and State Space \mathbb{R}^N	570
2.	Brownian Motion	572
3.	Continuity of Brownian Paths	576
4.	Brownian Motion Filtrations	578
5.	Elementary Properties of the Brownian Transition Density and Brownian	501
6	Motion The Zero-One Law for Brownian Motion	581 583
6. 7.		
7. 8.	Tied Down Brownian Motion	586 587
8. 9.	André Reflection Principle	589
9. 10.	Space-Time Brownian Motion in an Open Set $(N \ge 1)$	592
10.	Brownian Motion in an Interval	594

xvi Contents

12. 13.	Probabilistic Evaluation of Parabolic Measure for an Interval Probabilistic Significance of the Heat Equation and Its Dual	595 596
Cha	apter VIII	
The	e Itô Integral	599
1.	Notation	599
2.	The Size of Γ_0	601
3.	Properties of the Itô Integral	602
4.	The Stochastic Integral for an Integrand Process in Γ_0	605
5.	The Stochastic Integral for an Integrand Process in Γ	606
6.	Proofs of the Properties in Section 3	607
7.	Extension to Vector-Valued and Complex-Valued Integrands	611
8.	Martingales Relative to Brownian Motion Filtrations	612
9.	A Change of Variables	615
10.	The Role of Brownian Motion Increments	618
11.	(N = 1) Computation of the Itô Integral by Riemann-Stieltjes Sums	620
12.	Itô's Lemma	621
13.	The Composition of the Basic Functions of Potential Theory with Brownian	
	Motion	625
14.	The Composition of an Analytic Function with Brownian Motion	626
Cha	apter IX	
	ownian Motion and Martingale Theory	627
1.	Elementary Martingale Applications	627
2.	Coparabolic Polynomials and Martingale Theory	630
3.	Superharmonic and Harmonic Functions on \mathbb{R}^N and Supermartingales and	000
٠.	Martingales	632
4.	Hitting of an F_{σ} Set	635
5.	The Hitting of a Set by Brownian Motion	636
6.	Superharmonic Functions, Excessive for Brownian Motion	637
7.	Preliminary Treatment of the Composition of a Superharmonic Function	
	with Brownian Motion; A Probabilistic Fatou Boundary Limit Theorem.	641
8.	Excessive and Invariant Functions for Brownian Motion	645
9.	Application to Hitting Probabilities and to Parabolicity of Transition	
	Densities	647
10.	(N = 2). The Hitting of Nonpolar Sets by Brownian Motion	648
11.	Continuity of the Composition of a Function with Brownian Motion	649
12.	Continuity of Superharmonic Functions on Brownian Motion	650
13.	Preliminary Probabilistic Solution of the Classical Dirichlet Problem	651
14.	Probabilistic Evaluation of Reductions	653
15.	Probabilistic Description of the Fine Topology	656
16.	α-Excessive Functions for Brownian Motion and Their Composition with	
	Brownian Motions	659
17.	Brownian Motion Transition Functions as Green Functions; The Corre-	
	sponding Backward and Forward Parabolic Equations	661
18.	Excessive Measures for Brownian Motion	663
19.	Nearly Borel Sets for Brownian Motion	666
20.	Brownian Motion into a Set from an Irregular Boundary Point	666

Contents xvii

Chapter X				
Coi	onditional Brownian Motion	668		
1.	Definition			
2.	h-Brownian Motion in Terms of Brownian Motion	671		
3.	Contexts for (2.1)	676		
4.	Asymptotic Character of h-Brownian Paths at Their Lifetimes	677		
5.	h-Brownian Motion from an Infinity of h	680		
6.	Brownian Motion under Time Reversal	682		
7.	Preliminary Probabilistic Solution of the Dirichlet Problem for h-Harmonic Functions; h-Brownian Motion Hitting Probabilities and the			
	Corresponding Generalized Reductions	684		
8.	Probabilistic Boundary Limit and Internal Limit Theorems for Ratios of			
٥	Strictly Positive Superharmonic Functions	688		
9.	Conditional Brownian Motion in a Ball	691		
10.	Conditional Brownian Motion Last Hitting Distributions; The Capacitary	693		
11	Distribution of a Set in Terms of a Last Hitting Distribution	694		
11. 12.	Conditional Space-Time Brownian Motion	699		
13.	[Space-Time] Brownian Motion in $[\mathbb{R}^N] \mathbb{R}^N$ with Parameter Set \mathbb{R}	700		
Par	rt 3			
Cha	onton I			
	apter I	704		
Lat	ttices in Classical Potential Theory and Martingale Theory Correspondence between Classical Potential Theory and Martingale	705		
	Theory	705		
2.	Relations between Decomposition Components of S in Potential Theory and Martingale Theory	706		
3.	The Classes L^p and D	706		
4.	PWB-Related Conditions on h-Harmonic Functions and on Martingales.	707		
5.	Class D Property versus Quasi-Boundedness	708		
6.	A Condition for Quasi-Boundedness	709		
7.	Singularity of an Element of S_m^+	710		
8.	The Singular Component of an Element of S ⁺	711		
9.	The Class S_{pqb}	712		
10.	The Class S _{ps}	714		
11.	Lattice Theoretic Analysis of the Composition of an h-Superharmonic			
	Function with an h-Brownian Motion	715		
12.	A Decomposition of S_{ms}^+ (Potential Theory Context)	716		
	Continuation of Section 11	717		
Chr	apter II			
	•	710		
	ownian Motion and the PWB Method	719		
1.		719		
2.	Probabilistic Analysis of the PWB Method	720		

xviii Contents

3.	PWB ⁿ Examples	723
4.	Tail σ Algebras in the PWB ^h Context	725
Cha	upter III	
	ownian Motion on the Martin Space	727
1.	The Structure of Brownian Motion on the Martin Space	727
2.	Brownian Motions from Martin Boundary Points (Notation of Section 1)	728
3.	The Zero-One Law at a Minimal Martin Boundary Point and the	/20
3.	Probabilistic Formulation of the Minimal-Fine Topology (Notation of	
		730
4	Section 1)	732
4. 5.	Probabilistic Approach to Theorem 1.XI.4(c) and Its Boundary	132
٥.		733
6	Counterparts	735
6.	Martin Representation of Harmonic Functions in the Farabolic Context.	733
Ap	pendixes	
	pendix I	
Ana	alytic Sets	741
1.	Pavings and Algebras of Sets	741
2.	Suslin Schemes	741
3.	Sets Analytic over a Product Paving	742
4.	Analytic Extensions versus σ Algebra Extensions of Pavings	743
5.	Projection Characterization $\mathscr{A}(\mathscr{Y})$	743
6.	The Operation $\mathscr{A}(\mathscr{A})$	744
7.	Projections of Sets in Product Pavings	744
8.	Extension of a Measurability Concept to the Analytic Operation Context.	745
9.	The G_{δ} Sets of a Complete Metric Space	745
10.	Polish Spaces	746
11.	The Baire Null Space	746
12.	Analytic Sets	747
13.	Analytic Subsets of Polish Spaces	748
App	pendix II	
Car	pacity Theory	750
1.	Choquet Capacities	750
2.		750
	Choquet Capacity Theorem	751
4.	Lusin's Theorem	751
5.	A Fundamental Example of a Choquet Capacity	752
6.	Strongly Subadditive Set Functions	752
7.	Generation of a Choquet Capacity by a Positive Strongly Subadditive Set	
	Function	753
8.	Topological Precapacities	755
9.	Universally Measurable Sets	756

Contents xix

App	pendix III	
Lat	tice Theory	758
1.	Introduction	758
2.	Lattice Definitions	758
3.	Cones	758
4.	The Specific Order Generated by a Cone	759
5.	Vector Lattices	760
6.	Decomposition Property of a Vector Lattice	762
7.	Orthogonality in a Vector Lattice	762
8.	Bands in a Vector Lattice	762
9.	Projections on Bands	763
10.	The Orthogonal Complement of a Set	764
11.	The Band Generated by a Single Element	764
12.	Order Convergence	765
13.	Order Convergence on a Linearly Ordered Set	766
13.	Order Convergence on a Linearry Ordered Set	700
Anr	pendix IV	
	tice Theoretic Concepts in Measure Theory	767
1.	Lattices of Set Algebras	767
2.	Measurable Spaces and Measurable Functions	767
3.	Composition of Functions	768
<i>3</i> . 4.	The Measure Lattice of a Measurable Space	769
5 .	The σ Finite Measure Lattice of a Measurable Space (Notation of Section 4)	771
<i>5</i> .	The Hahn and Jordan Decompositions	772
0. 7.		772
7. 8.	The Vector Lattice \mathcal{M}_{σ}	773
9.	· · · · · · · · · · · · · · · · · · ·	
	Lattices of Measurable Functions on a Measure Space	774
10.	Order Convergence of Families of Measurable Functions	775
11.	Measures on Polish Spaces	777
12.	Derivates of Measures	778
Anı	pendix V	
	iform Integrability	779
011	morm megiaomeg	,,,
Apı	pendix VI	
	rnels and Transition Functions	781
1.	Kernels	781
2.	Universally Measurable Extension of a Kernel	782
3.		782
٥.	Transition I unctions	702
Apr	pendix VII	
	egral Limit Theorems	785
1.	An Elementary Limit Theorem	785
2.	Ratio Integral Limit Theorems	786
3.	A One-Dimensional Ratio Integral Limit Theorem	786
J.	A Paria Integral Limit Theorem Involving Convey Variational Derivates	700

XX Contents

2. Suprema of Families of Lower Semicontinuous Functions				
3. Choquet Topological Lemma	792			
Historical Notes	793			
Part 1	793			
Part 2	806			
Part 3	815			
Appendixes	816			
Bibliography	819			
Notation Index	827			
Index	829			