## **Contents**

| 1                                                 | Intr                                                             | duction                                                    | 1        |  |  |  |
|---------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|----------|--|--|--|
| 2                                                 | Partial Differential Equations in Mathematical Modeling of Fluid |                                                            |          |  |  |  |
|                                                   | Flor                                                             | Problems                                                   | - 5      |  |  |  |
|                                                   | 2.1                                                              | Introduction                                               | 5        |  |  |  |
|                                                   |                                                                  | 2.1.1 The Navier-Stokes Equations for Compressible Viscous |          |  |  |  |
|                                                   |                                                                  | Flow                                                       | 12       |  |  |  |
|                                                   |                                                                  | 2.1.2 The Euler Equations for Compressible Inviscid Flow   | 12       |  |  |  |
|                                                   |                                                                  | 2.1.3 Vector Form of the Navier-Stokes Equations for       |          |  |  |  |
|                                                   |                                                                  | Compressible Viscous Flow                                  | 13       |  |  |  |
|                                                   | 2.2                                                              | Non-dimensionalization                                     | 14       |  |  |  |
|                                                   | 2.3                                                              | Turbulence and Its Modeling                                | 14       |  |  |  |
|                                                   |                                                                  | 2.3.1 Turbulent Averaged Quantities                        | 15       |  |  |  |
|                                                   |                                                                  | 2.3.2 The Reynolds Averaged Navier-Stokes Equations        | 16       |  |  |  |
|                                                   | 2.4                                                              | Analytic Aspects of the PDEs                               | 17       |  |  |  |
| 3                                                 | PDI                                                              | Constrained Optimization Methods                           | 19       |  |  |  |
|                                                   | 3.1                                                              | Unconstrained Optimization Problem                         | 19       |  |  |  |
|                                                   | 3.2                                                              | Constrained Optimization Problem                           | 21       |  |  |  |
|                                                   |                                                                  | 3.2.1 Nested Analysis and Design (NAND)                    | 21       |  |  |  |
|                                                   |                                                                  | 3.2.2 Simultaneous Analysis and Design (SAND)              | 24       |  |  |  |
|                                                   |                                                                  | 3.2.3 Full Newton SAND                                     | 24       |  |  |  |
| Pai                                               | t I: A                                                           | plications in Environmental Engineering                    |          |  |  |  |
| 4                                                 | Mat                                                              | ematical Model of Multiphase Flow through Porous Media     | 29       |  |  |  |
|                                                   | 4.1                                                              | Introduction                                               | 29       |  |  |  |
| 4.2 General form of the Multiphase Flow Equations |                                                                  |                                                            |          |  |  |  |
|                                                   |                                                                  | 4.2.1 Isothermal Water-Gas System (Two-Phase Flow)         | 30<br>31 |  |  |  |



|     |         | 4.2.2 Nonisothermal Water-Gas Systems (Two-Phase                               |    |
|-----|---------|--------------------------------------------------------------------------------|----|
|     |         | Two-Component Flow)                                                            | 32 |
|     |         | 4.2.3 Constitutive Relationships                                               | 34 |
|     | 4.3     | The Forward Simulation Problem                                                 | 36 |
|     |         | 4.3.1 Governing Equations                                                      | 36 |
|     | 4.4     | Discretization                                                                 | 38 |
|     |         | 4.4.1 Implicit Time Discretization                                             | 40 |
|     | 4.5     | The Software System MUFTE_UG                                                   | 41 |
| 5   | Para    | ameter Identification in Multiphase Flow through Porous                        |    |
|     | Med     | lia                                                                            | 43 |
|     | 5.1     | Introduction                                                                   | 43 |
|     | 5.2     | Least-Squares Formulation                                                      | 44 |
|     | 5.3     | The Multiple Shooting Parameter Estimation Approach                            | 44 |
|     | 5.4     | A Reduced Generalized Gauss-Newton Method                                      | 45 |
|     | 5.5     | Computation of (Inexact) Derivatives                                           | 47 |
|     | 5.6     | Numerical Results and Discussion                                               | 50 |
|     |         | 5.6.1 Isothermal Case (Two-Phase flow)                                         | 50 |
|     |         | 5.6.2 Non-isothermal Case (Two-Phase Two-Component                             |    |
|     |         | Flow)                                                                          | 52 |
|     | 5.7     | Conclusions                                                                    | 61 |
| Par | t II: A | Applications in Aerodynamics                                                   |    |
|     |         |                                                                                |    |
| 6   |         | ultaneous Pseudo-Time-Stepping for PDE-Model Based                             | 65 |
|     | -       | imization Problems                                                             | 65 |
|     | 6.1     | Introduction                                                                   | 03 |
|     | 6.2     | The Optimization Problem and Pseudo-unsteady Formulation of the KKT Conditions | 67 |
|     | 6.3     | Reduced SQP Methods                                                            | 69 |
|     | 6.4     | Pseudo-Time-Stepping for Optimization Problems                                 | 71 |
|     | 6.5     | Application to a Model Problem                                                 | 72 |
|     | 6.6     |                                                                                | 73 |
|     |         | Analysis of the Hessian                                                        | 75 |
|     | 6.7     | Numerical Implementation                                                       |    |
|     | 6.8     | Results and Discussion                                                         | 76 |
|     | 6.9     | Conclusions                                                                    | 80 |
| 7   |         | odynamic Shape Optimization Using Simultaneous                                 |    |
|     | Pseu    | ıdo-Time-Stepping                                                              | 81 |
|     | 7.1     | Introduction                                                                   | 81 |
|     | 7.2     | Pseudo-Time-Stepping for Optimization Problems                                 | 83 |
|     | 7.3     | Detailed Equations of the Aerodynamic Shape Optimization                       |    |
|     |         | Problem in 2D                                                                  | 83 |
|     | 7.4     | Discretization                                                                 | 86 |
|     | 7.5     | Reduced Hessian Updates                                                        | 92 |
|     |         |                                                                                |    |

Contents XI

|    |                                                              | 7.6.1                                              | Drag Reduction with Geometric Constraint for an             |     |  |  |  |  |  |  |  |
|----|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-----|--|--|--|--|--|--|--|
|    |                                                              |                                                    | RAE2822 Airfoil                                             | 95  |  |  |  |  |  |  |  |
|    |                                                              | 7.6.2                                              | Drag Reduction with Geometric Constraints for               |     |  |  |  |  |  |  |  |
|    |                                                              |                                                    | Supersonic Cruise Transport (SCT) Wing                      | 102 |  |  |  |  |  |  |  |
|    | 7.7                                                          | Concl                                              | usions                                                      | 104 |  |  |  |  |  |  |  |
| 8  | Indirect Treatment of State Constraints in Aerodynamic Shape |                                                    |                                                             |     |  |  |  |  |  |  |  |
|    |                                                              |                                                    | on Using Simultaneous Pseudo-Time-Stepping                  | 105 |  |  |  |  |  |  |  |
|    | 8.1                                                          |                                                    | uction                                                      | 105 |  |  |  |  |  |  |  |
|    | 8.2                                                          |                                                    | o-Time-Stepping for the Constrained Optimization            |     |  |  |  |  |  |  |  |
|    |                                                              |                                                    | em                                                          | 105 |  |  |  |  |  |  |  |
|    | 8.3                                                          | Nume                                               | rical Results and Discussion                                | 109 |  |  |  |  |  |  |  |
|    | 8.4                                                          |                                                    | usions                                                      | 116 |  |  |  |  |  |  |  |
| 9  | Dire                                                         | ct Trea                                            | atment of State Constraints in Aerodynamic Shape            |     |  |  |  |  |  |  |  |
|    |                                                              |                                                    | on Using Simultaneous Pseudo-Time-Stepping                  | 117 |  |  |  |  |  |  |  |
|    | 9.1                                                          |                                                    | uction                                                      | 117 |  |  |  |  |  |  |  |
|    | 9.2                                                          |                                                    | State Constraints                                           | 118 |  |  |  |  |  |  |  |
|    |                                                              | 9.2.1                                              | Partial Reduction of the Problem                            | 119 |  |  |  |  |  |  |  |
|    |                                                              | 9.2.2                                              | Solution Strategy of the Constrained Problem                | 120 |  |  |  |  |  |  |  |
|    |                                                              | 9.2.3                                              | Back Projection                                             | 121 |  |  |  |  |  |  |  |
|    | 9.3                                                          | Nume                                               | rical Results and Discussion                                | 122 |  |  |  |  |  |  |  |
|    |                                                              | 9.3.1                                              | Applications in 2D                                          | 123 |  |  |  |  |  |  |  |
|    |                                                              | 9.3.2                                              | Application in 3D                                           | 127 |  |  |  |  |  |  |  |
|    | 9.4                                                          | Concl                                              | usions                                                      | 132 |  |  |  |  |  |  |  |
| 10 | Mul                                                          | Multigrid One-Shot Pseudo-Time-Stepping Method for |                                                             |     |  |  |  |  |  |  |  |
|    |                                                              |                                                    | nic Shape Optimization                                      | 135 |  |  |  |  |  |  |  |
|    |                                                              | •                                                  | uction                                                      | 135 |  |  |  |  |  |  |  |
|    | 10.2                                                         | The M                                              | Iultigrid Algorithm                                         | 136 |  |  |  |  |  |  |  |
|    |                                                              |                                                    | rical Results and Discussion                                | 137 |  |  |  |  |  |  |  |
|    |                                                              | 10.3.1                                             | Drag Reduction with Constant Thickness for RAE2822          |     |  |  |  |  |  |  |  |
|    |                                                              |                                                    | Airfoil                                                     | 137 |  |  |  |  |  |  |  |
|    |                                                              | 10.3.2                                             | Drag Reduction with Geometric Constraints for               |     |  |  |  |  |  |  |  |
|    |                                                              |                                                    | SCT Wing                                                    | 147 |  |  |  |  |  |  |  |
|    | 10.4                                                         | Concl                                              | usions                                                      | 152 |  |  |  |  |  |  |  |
| 11 | Mul                                                          | tigrid (                                           | One-Shot Pseudo-Time-Stepping Method for State              |     |  |  |  |  |  |  |  |
|    |                                                              |                                                    | d Aerodynamic Shape Optimization                            | 155 |  |  |  |  |  |  |  |
|    |                                                              |                                                    | uction                                                      | 155 |  |  |  |  |  |  |  |
|    | 11.2                                                         | The M                                              | lultigrid Algorithm                                         | 156 |  |  |  |  |  |  |  |
|    |                                                              |                                                    | rical Results and Discussions                               | 157 |  |  |  |  |  |  |  |
|    |                                                              | 11.3.1                                             | Drag Reduction with Constant Lift on $(193 \times 33)$ Grid | 158 |  |  |  |  |  |  |  |
|    |                                                              | 11.3.2                                             | Drag Reduction with Constant Lift on $(321 \times 57)$ Grid | 164 |  |  |  |  |  |  |  |
|    | 114                                                          | Conch                                              | ueione                                                      | 173 |  |  |  |  |  |  |  |

XII Contents

| 12  | One-Shot Pseudo-Time-Stepping Method for Aerodynamic |                                                          |     |  |  |
|-----|------------------------------------------------------|----------------------------------------------------------|-----|--|--|
|     | Shape Optimization Using the Navier-Stokes Equations |                                                          |     |  |  |
|     | 12.1                                                 | Introduction                                             | 175 |  |  |
|     | 12.2                                                 | Detailed Equations of the Aerodynamic Shape Optimization |     |  |  |
|     |                                                      | Problem                                                  | 176 |  |  |
|     | 12.3                                                 | Numerical Results and Discussion                         | 183 |  |  |
|     | 12.4                                                 | Conclusions                                              | 188 |  |  |
| Ref | erenc                                                | es                                                       | 189 |  |  |
| Ind | ex                                                   |                                                          | 199 |  |  |